Robust control of the trolley of a single girder overhead crane under the action of unmatched perturbations and incomplete measurement
- Авторлар: Antipov A.S.1, Tkacheva O.S.1
-
Мекемелер:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Шығарылым: № 105 (2023)
- Беттер: 41-64
- Бөлім: Control systems analysis and design
- URL: https://journals.rcsi.science/1819-2440/article/view/364073
- DOI: https://doi.org/10.25728/ubs.2023.105.3
- ID: 364073
Дәйексөз келтіру
Толық мәтін
Аннотация
We considered the problem of controlling an electromechanical system, which is a single-girder overhead crane trolley (mechanical subsystem) with the reduced dynamics of a DC motor (electrical subsystem). The plant operates under conditions of lack of controls, the action of parametric and external perturbations, and incomplete measurements. In this case, the perturbations acting on the mechanical subsystem are unmatched. For safe transfer of payload in these conditions, a number of solutions have been proposed. A reference trolley trajectory with an integral of the angular coordinate has been formed. The presence of the integral part leads to the damping of payload oscillations. It is shown that this part also makes it possible to suppress unmatched wind perturbations. To track the generated trajectory, a procedure for block synthesis of sigmoid fictitious controls in the mechanical subsystem and true discontinuous control in the electrical subsystem has been developed. Smooth and bounded sigmoid functions provide suppression of unmatched perturbations. These functions are implemented in the actuator and do not lead to its strong wear, which occurs during the formation of discontinuous fictitious controls. For information support of the control law, a dynamic differentiator with a sigmoid corrective action has been developed, which provides an estimate of the speed by measuring the tracking error with any given accuracy. The proposed solution will make it possible to abandon the trolley speed sensor and avoid jumps in evaluation signals. The results of numerical simulation of closed-loop systems with discontinuous and sigmoid fictitious controls are presented. They demonstrated the effectiveness of the developed approach.
Авторлар туралы
Aleksey Antipov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: scholess18@mail.ru
Moscow
Olga Tkacheva
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: tkolga17@gmail.com
Moscow
Әдебиет тізімі
АНТИПОВ А.C., КРАСНОВА C.А. Система стабилиза-ции положения тележки крана с использованием сигмо-идальной функции // Мехатроника, автоматизация, управление. – 2019. – Т. 20, №10. – С. 609–614. КАБАНОВ С.А., НИКУЛИН Е.Н., ЯКУШЕВ Б.Э., ЯКУ-ШЕВА Д.Б. Оптимальное управление перемещением гру-за мостовым краном // Приборостроение. – 2011. – №5. – С. 56–65. КОКУНЬКО Ю.Г., КРАСНОВА С.А. Два подхода к син-тезу инвариантной системы слежения для беспилотно-го летательного аппарата // Управление большими си-стемами. – 2020. – №85. – C.113–142. КРАСНОВА С.А., УТКИН В.А., УТКИН А.В. Блочный подход к анализу и синтезу инвариантных нелинейных систем слежения // Автоматика и телемеханика. – 2017. – №12. – С. 26–53. КРУГЛОВ С.П., КОВЫРШИН С.В., АКСАМЕНТОВ Д.Н. Адаптивное управление двухмаятниковым подвесом мо-стового крана // Мехатроника, автоматизация, управле-ние. – 2022. – Т. 23, №9. – С. 451–461. ALGHANIM K., MOHAMMED A., ANDANI M. An input shaping control scheme with application on overhead cranes // Int. Journal of Nonlinear Sciences and Numerical Simulation. – 2019. – Vol. 20, Iss. 5. – P. 561–573. ANTIPOV A.S., KRASNOVA S.A. Using of Sigmoid Func-tions in the Control System of the Overhead Crane // Proc. of the 16th Int. Conf. on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference). – Moscow: IEEE, 2022. – P. 1–4 ANTIPOV A.S., KRASNOVA S.A., PIVNEVA S.V. Trajec-tory Planning of Crane Trolley for Smooth Payload Trans-portation // Proc. of the 15th Int. Conf. Management of Large-Scale System Development (MLSD). – Moscow: IEEE, 2022. – P. 1–5. CAO X., WANG Z., ZHANG X. Precise Locating Control for a Polar Crane Based on Sliding Mode Active Disturb-ance Rejection Control and Quadratic Programming Algo-rithm // Machines. – 2021. – Vol. 9, No. 2. – P. 1–21. CRISTOFARO A., DE LUCA A. Reduced-Order Observer Design for Robot Manipulators // IEEE Control Systems Let-ters. –2022. – Vol. 7. – P. 520–525. HUAN X. et al. Sliding Mode Observation and Control for Overhead Cranes with Varying Rope Length // China Auto-mation Congress (CAC–2021). – 2021. – P. 4578–4583. JAFARI J., GHAZAL M., NAZEMIZADEH M. A LQR Opti-mal Method to Control the Position of an Overhead Crane // Int. Journal of Robotics and Automation. – 2014. – Vol.3, No. 4. – P. 252–258. JOLEVSKI D., BEGO O. Model predictive control of gan-try/bridge crane with anti-sway algorithm // Journal of Me-chanical Science and Technology. – 2015. – Vol. 29. – P. 827–834. LA V.D., NGUYEN K.T. Combination of input shaping and radial spring-damper to reduce tridirectional vibration of crane payload // Mechanical Systems and Signal Pro-cessing. – 2019. – Vol. 116. – P. 310–321. MA B., FANG Y., ZHANG X. Adaptive Tracking Control for an Overhead Crane System // Proc. of the 17th IFAC World Congress. Seoul, July, 2008. – 2008. – P. 12194–12199. MOHAMED K.T., ABDEL-RAZAK M.H., HARAZ E.H., ATA A.A. Fine tuning of a PID controller with inlet deriva-tive filter using Pareto solution for gantry crane systems // AEJ - Alexandria Engineering Journal. – 2021. – Vol. 61, No. 9. – P. 6659–6673. SHEHU M.A., AI-JUN LI, TIAN H. Modified Higher-Order Sliding Mode Observer-Based Super-Twisting Controller for Perturbed Overhead Cranes // Chinese Automation Con-gress (CAC–2019), Hangzhou, China. – 2019. – P. 255–260. SHI L., CUI S., LI X., ZHANG Y. Sliding Mode Control of Overhead Crane Based on High Gain Observer // IEEE 5th Advanced Information Management, Communicates, Elec-tronic and Automation Control Conference (IMCEC–2022), Chongqing, China. – 2022. – P. 1–4. XU R., ZHOU M. Sliding mode control with sigmoid func-tion for the motion tracking control of the piezo-actuated stages // Electron. Lett. – 2017. – Vol. 53, No. 2. – P. 75–77. XI Z., HESKETH T. Discrete time integral sliding mode con-trol for overhead crane with uncertainties // IET Control Theory & Applications. – 2010. – Vol. 4, Iss. 10. – P. 2071–2081. ZHANG M., MA X., SONG R., RONG X., TIAN G., TIAN X., LI Y. Adaptive Proportional-Derivative Sliding Mode Control Law With improved Transient Performance for Underactuated Overhead Crane Systems // IEEE CAA J. Autom. Sin. – 2018. – Vol. 5, No. 3. – P. 683–690.
Қосымша файлдар


