Software implementation of the lax – friedrichs numerical method for modeling nonstationary problems of gas dynamics
- Authors: Malyshev S.V.1
-
Affiliations:
- Moscow State University
- Issue: No 105 (2023)
- Pages: 30-40
- Section: Systems analysis
- URL: https://journals.rcsi.science/1819-2440/article/view/364072
- DOI: https://doi.org/10.25728/ubs.2023.105.2
- ID: 364072
Cite item
Full Text
Abstract
This article is devoted to the software implementation of the numerical Lax-Friedrichs method for modeling nonstationary problems of gas dynamics. The Soda problem is considered in two dimensions. We postulate it in the following way: there is a closed shock tube with a plate in the middle. The plate separates two gases with different thermodynamic characteristics. At the initial moment of time, it is instantly deleted: gases mix and produce a shock wave. The purpose of the work is to find the thermodynamic characteristics at any time and to program the implementation of calculations using the numerical Lax-Friedrichs method. This task is relevant at the moment due to the lack of clear computational algorithms in the field of gas dynamics. The solution depends on the number of cells in the grid into which the surface is divided. As a result, the calculation and numerical values for different grids are given as well as their comparison with the help of various norms is made.
About the authors
Sergey Vadimovich Malyshev
Moscow State University
Email: serge.malychev@mail.ru
Moscow
References
КУРАНТ Р., ФРИДРИХС К., ЛЕВИ Г. О разностных уравнениях математической физики // Успехи матема-тических наук. – 1941. – №8. – С. 125–160. ЛОЙЦЯНСКИЙ Л.Г. Механика жидкости и газа: Учеб. Для вузов. – 7-е изд., испр. – М.: Дрофа, 2003. ОВСЯННИКОВ Л.В. Лекции по основам газовой дина-мики. – Москва – Ижевск: Институт компьютерных ис-следований, 2003. СТУЛОВ В.П. Лекции по газовой динамике. – М.: ФИЗ-МАТЛИТ, 2004. ЧЁРНЫЙ Г.Г. Газовая динамика. – М.: Наука, Гл. ред. физ.-мат. лит., 1988. УИЗЕМ ДЖ. Линейные и нелинейные волны. – М.: Мир, 1973. COURANT R., FRIEDRICHS K., LEWY H. Über die par-tiellen Differenzengleichungen der mathematischen Physik // Mathematische Annalen. – 1928. – Vol. 100, No. 1. – P. 32–74. LEVEQUE R.J. Numerical Methods for Conservation Laws. – Basel, Boston, Berlin: Birkhäuser, 1922. –P. 125. SOD G.A. A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws // J. Comput. Phys. – 1978. – Vol. 27. – P. 1–31. WEISSTEIN E.W. Courant -Friedrichs-Lewy Condition [Электронный ресурс]. – URL: https://mathworld.wolfram.com/Courant-Friedrichs-LewyCondition.html (дата обращения: 16.11.2020).
Supplementary files


