Data assimilation in neutronics modelling: current status and development prospects

Cover Page

Cite item

Full Text

Abstract

The article presents an analysis of the current state and prospects for the development of data assimilation procedures in neutronics modelling. These procedures are used to refine the parameters of neutronics models based on reactor experiment results, improve the accuracy of calculations predicting the characteristics of nuclear facilities under development, and plan informative experiments that closely match the neutronics properties of the facilities being designed. The article provides a classification of the approaches used in data assimilation for neutronics modelling, discusses the areas of application, advantages, and disadvantages of various implementations, identifies the main trends and directions for further development, and considers the current scientific and applied problems in the subject area.

About the authors

Andrei Alekseevich Andrianov

Obninsk Institute for Nuclear Power Engineering NRNU MEPhI

Email: andreyandrianov@yandex.ru
Obninsk

Olga Nikolaevna Andrianova

Obninsk Institute for Nuclear Power Engineering NRNU MEPhI

Email: o.n.andrianova@yandex.ru
Obninsk

References

  1. АНДРИАНОВ А.А., АНДРИАНОВА О.Н., ГОЛОВ-КО Ю.Е. Методика оценки интегральных эксперимен-тов для использования в задаче оценки точности нейтронно-физических расчетов // Депонированная ру-копись. – № 68-В2021. – 2021. – 58 с.
  2. АНДРИАНОВ А.А., АНДРИАНОВА О.Н., КОРО-ВИН Ю.А. и др. Программный комплекс оптимизации параметров нейтронно-физических моделей с учетом результатов интегральных экспериментов // Известия вузов. Ядерная энергетика. – 2023. – №2. – С. 148–161.
  3. ВАНЬКОВ А.А., ВОРОПАЕВ А.И., ЮРОВА Л.Н. Анализ реакторно-физического эксперимента. – М.: Атомиздат, 1977. – 88 с.
  4. УСАЧЕВ Л.Н., БОБКОВ Ю.Г. Теория возмущений и пла-нирование эксперимента в проблеме ядерных данных для реакторов. – М.: Атомиздат, 1980. – 88 c.
  5. УСЫНИН Г.Б., КАРАБАСОВ А.С., ЧИРКОВ В.А. Опти-мизационные модели реакторов на быстрых нейтронах. – М.: Атомиздат, 1981. – 232 с.
  6. CACUCI D.G., BUJOR M. Sensitivity and uncertainty anal-ysis, data assimilation, and predictive best-estimate model calibration // Handbook of Nuclear Engineering. Springer, Boston. – 2010. – DOI: https://doi.org/10.1007/978-0-387-98149-9_17 (дата обращения: 18.03.2023).
  7. DRAGT J.B. Statistical considerations on techniques for ad-justment // RCN-122. – Reactor Centrum Nederland. – 1970. – P. 85–105.
  8. IVANOV E., SAINT-JEAN C., SOBES V. Nuclear data as-similation, scientific basis and current status // EPJ Nuclear Sci. Technol. – 2021. – DOI: https://doi.org/10.1051/epjn/2021008 (дата обращения: 18.03.2023).
  9. GRECHANUK P., RISING M.E., PALMER T.S. Using ma-chine learning methods to predict bias in nuclear criticality safety // Jour. of Computational and Theoretical Transport. – 2019. – Vol. 47. – P. 552–565.
  10. HOEFER A., BUSS O. Assessing and improving model fit-ness in MOCABA data assimilation // Ann. Nucl. Energy. – 2021. – Vol. 162. – P. 10–21.
  11. HOEFER A., BUSS O., HENNEBACH M. et.al. MOCABA: A general Monte Carlo–Bayes procedure for improved pre-dictions of integral functions of nuclear data // Ann. Nucl. Energy. – 2015. – Vol. 77. – P. 514–521.
  12. HOEFER A., BUSS O., SCHMID M. Applications of Multi-variate Normal Bayesian Models in Nuclear Engineering // Nuclear Technology. – 2019. – Vol. 205, No. 12. – P. 1578–1587.
  13. KONING A.J. Bayesian Monte Carlo method for nuclear data evaluation // Nucl. Data Sheets. – 2015. – Vol. 123. – P. 207–213.
  14. NEWELL Q., SANDERS C. Stochastic uncertainty propaga-tion in Monte Carlo depletion calculations // Nuclear Sci-ence and Engineering. – 2015. – Vol. 179, No. 3. – P. 253–263.
  15. PALMIOTTI G., SALVATORES M. The role of experiments and of sensitivity analysis in simulation validation strategies with emphasis on reactor physics // Ann. Nucl. Energy. – 2013. – Vol. 52. – P. 10–21.
  16. ROCHMAN D., SCIOLLA C.M. Nuclear Data Uncertainty Propagation for a Typical PWR Fuel Assembly with Burnup // Nuclear Engineering and Technology. – 2014. – Vol. 46, No. 3. – P. 353–362.
  17. ROWLANDS J.L., MACDOUGALL L.D. The use of integral measurements to adjust cross-sections and predicted reactor properties // Proc. of the Int. Conf. on Fast Critical Experi-ments and their Analysis. – ANL-7320. – 1966.
  18. REARDEN B.T. Perturbation theory eigenvalue sensitivity analysis with Monte Carlo techniques // Nuclear Sci. Eng. – 2004. – Vol. 146, No. 3. – P. 367–382.
  19. SIEFMAN D., HURSIN M., ROCHMAN D. et.al. Stochastic vs. sensitivity-based integral parameter and nuclear data adjustments // Eur. Phys. J. Plus. – 2018. – Vol. 133, No. 12. – P. 429–438.
  20. http://www.inis.iaea.org (дата обращения: 18.03.2023).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).