Design of a reference actions generator for a mobile robot control system
- Authors: Kokunko J.G.1
-
Affiliations:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Issue: No 101 (2023)
- Pages: 123-139
- Section: Vehicle control and navigation
- URL: https://journals.rcsi.science/1819-2440/article/view/360594
- DOI: https://doi.org/10.25728/ubs.2023.101.7
- ID: 360594
Cite item
Full Text
Abstract
Planning the path of an autonomous wheeled robot can pose problems such as ensuring motion safety, smoothness and bounded curvature of the path and its rate of change, considering the design constraints of the robot as a mechanical control object. The joint solution of these problems can lead to cumbersome analytical calculations that are not realizable in real-time. In this paper, we propose to simplify and automate the generation of planar paths for a wheeled robot, which will solve both of these problems. At the first stage, a primitive path is constructed in the form of a flat polyline. The second stage solves the problem of smoothing the articulation of the polyline. Instead of geometric calculations, a dynamic generator is designed as a copy of the equations of motion of the robot. The synthesis of the generator's correcting actions, which simulate the robot's control actions, is based on the decomposition method and S-shaped smooth and constrained nonlinear feedbacks. This ensures that the design constraints of the robot on velocity, acceleration and control torques are met, and the output variables of the generator will generate a naturally smoothed path with acceptable curvature when tracking the coordinates of the reference nonsmooth trajectory.
About the authors
Julia Georgievna Kokunko
V.A. Trapeznikov Institute of Control Sciences of RAS
Author for correspondence.
Email: juliakokunko@gmail.com
Moscow
References
- Антипов А. С., Краснова С. А., Уткин В. А. Синтез инвариантных нелинейных одноканальных систем слежения с сигмоидальными обратными связями с обеспечением заданной точности слежения // Автоматика и телемеханика. – 2022. – №1. – С. 40–66.
- Кочетков С. А., Уткин В. А. Метод декомпозиции в задачах управления мобильными роботами // Автоматика и телемеханика. – 2011. – №10. – С. 86–103.
- Краснов Д. В., Уткин А. В. Синтез многофункциональной системы слежения в условиях неопределенности // Управление большими системами. – 2017. – Вып. 69. – С. 29–49.
- Краснова С. А., Уткин А. В. Анализ и синтез минимально-фазовых нелинейных SISO-систем при действии внешних несогласованных возмущений // Проблемы управления. – 2014. – №6. – С. 22–30.
- Пестерева А. В. Синтез стабилизирующего управления в задаче следования колесного робота вдоль заданной кривой // Автоматика и телемеханика. – 2012. – №7. – С. 25–39.
- Пестерева А. В., Рапопорт Л. Б., Ткачев С. Б. Каноническое представление нестационарной задачи путевой стабилизации // Известия РАН. Теория и системы управления. – 2015. – Т. 54, №4. – С. 160–176.
- Bautista G. D., Perez J., Milánes V., Nashashibi F. A review of motion planning techniques for automated vehicles // IEEE T-ITS. – 17(4). – P. 1–11.
- Belinskaya Y. Application of the covering method for trajectories design for car-like robot // Proc. of the 14th Int. Conf. Management of Large-Scale System Development (MLSD–2021), 27–29 September 2021, Moscow, Russia.
- Belinskaya Yu. S., Chetverikov V. N. Covering method for point-to-point control of constrained flat system // IFAC-PapersOnLine. – 2015. – Vol. 48(11). – P. 924–929.
- Busurin V. I., Yin Naing Win. Microoptoelectromechanical ring angular velocity transducer based on the optical tunnel effect for control system of mobile objects // J. Phys.: Conf. Ser. – 1333:052002.
- Farouki R. T. Pythagorean Hodograph Curves. – Springer, 2008.
- Kano H., Fujioka H. B-Spline trajectory planning with curvature constraint // Proc. Annual American Control Conference (ACC). – 2018. – P. 1963–1968.
- Kochetkov S. A. Mobile robot trajectory control under influence of unknown perturbation // Mathematics in Engineering, Science and Aerospace. – 2019. – No. 10(4). – P. 725–732.
- Kokunko Yu., Krasnova S. Synthesis of a tracking system with restrictions on UAV state variables // Mathematics in Engineering, Science and Aerospace. – 2019. – No. 10(4). – P. 695–705.
- LaValle S. M. Planning Algorithms. – Cambridge University Press, 2006.
- Mercy T., Van Parys R., Pipeleers G. Spline-based motion planning for autonomous guided vehicles in a dynamic environment // IEEE TCST. – 2017. – Vol. 26(6). – P. 2182–2189.
- Minguez J., Lamiraux F., Laumond J. P. Motion planning and obstacle avoidance // In: Springer Handbook of Robotics. – Springer International Publishing, 2008. – P. 1177–1202.
- Sakcsak B., Bascetta L., Ferretti G., Prandini M. Sampling-based optimal kinodynamic planning with motion primitives // Autonomous Robots. – 2019. – Vol. 43(7). – P. 1715–1732.
- Samson C. Control of chained systems. Application to path following and time varying point-stabilization of mobile robots // IEEE Trans. Automat. Control. – 1995. – Vol. 40(1). – P. 64–77.
- Webb D. J., Van der Berg J. Kinodynamic RRT*: asymptotically optimal motion planning for robots with linear // Proc. of the IEEE Int. Conf. on Robotics and Automation – 2013 (ICRA–2013), May 6–10, 2013, Karlsruhe, Germany. – P. 5039–5046.
- Zhou Ch., Huang B., Fränti P. A review of motion planning algorithms for intelligent robots // Journal of Intelligent Manufacturing. – 2022. – No. 33. – P. 387–424.
Supplementary files


