Determining the architecture of a neural network in the problem of estimating the state of the battery charge

Cover Page

Cite item

Full Text

Abstract

The problem of estimating the state of charge of the battery, based on neural networks, is considered. Two types of recurrent nonlinear autoregressive neural networks were investigated in the problem of estimating the state of charge of a battery during its use. The main criterion for the quality of forecasting was the mean square error. According to the results of the study, the optimal structure of the neural network was chosen.

About the authors

Ilya Andreevich Yakovlev

Ufa State Aviation Technical University

Author for correspondence.
Email: ilya-yakovlev-1999@bk.ru
Ufa

Anastasia Valer'evna Elizarova

Ufa State Aviation Technical University

Email: elizarovaanastasia@gmail.com
Ufa

Guzel Askhatovna Saitova

Ufa State Aviation Technical University

Email: saitova@bk.ru
Ufa

References

  1. Галушкин Н. Е., Галушкина Н. Н. Анализ эмпирических зависимостей, описывающих разряд щелочных аккумуляторов // Электрохимическая энергетика. – 2005. – Т. 5, №1. – С. 43–50.
  2. Гейдаров П. Ш. Сравнительный анализ результатов обучений нейронной сети с вычисленными весовыми значениями и с генерацией весовых значений случайным образом // Автоматика и телемеханика. – 2020. – №7. – С. 56–78. Англ.: Geidarov P. Comparative analysis of the results of training a neural network with calculated weights and with random generation of the weights // Automation and Remote Control. – 2020. – Vol. 81:7. – P. 1211–1229.
  3. Ерин С. Литиевые аккумуляторы: от сырья до готовых химических источников тока // Технологии в электронной промышленности. – 2014. – №3. – С. 70–73.
  4. Саитова Г. А., Елизарова А. В. Нейросетевая модель для оценки состояния заряженности литий-ионного аккумулятора // Перспективные информационные технологии (ПИТ–2021) [Электронный ресурс]: труды Международной научно-технической конференции / Под ред. С. А. Прохорова. – Электрон. текстовые и граф. дан. – Самара: Изд-во Самарского научного центра РАН, 2021. – С. 288–293.
  5. Хайкин С. Нейронные сети. Полный курс. Второе издание: перевод с англ. – М.: Издательский дом «Вильямс», 2006. – 1104 с.
  6. Чудинов Е. А., Ткачук С. А., Шишко В. С. Технологические основы производства литий-ионного аккумулятора // Электрохимическая энергетика. – 2015. – Т. 15, №2. – С. 84–92.
  7. Chang W. Y. The state of charge estimating methods for battery: A review // International Scholarly Research Notices. – 2013. – Vol. 2013. – 8 p.
  8. Li S. et al. State-of-charge estimation of lithium-ion batteries in the battery degradation process based on recurrent neural network // Energies. – 2021. – Vol. 14, No. 2. – P. 306.
  9. Tang X. et al. Li-ion battery parameter estimation for state of charge // IEEE American Control Conference (ACC–2011). – IEEE, 2011. – P. 941–946.
  10. Tian J. et al. Flexible battery state of health and state of charge estimation using partial charging data and deep learning // Energy Storage Materials. – 2022. – Vol. 51. – P. 372–381.
  11. Vidal C. et al. Machine learning applied to electrified vehicle battery state of charge and state of health estimation: State-of-the-art // IEEE Access. – 2020. – Vol. 8. – P. 52796–52814.
  12. Wang K. et al. State of charge estimation of composite energy storage systems with supercapacitors and lithium batteries // Complexity. – 2021. – Vol. 2021.
  13. Wang L. et al. State of charge estimation for LiFePO4 battery via dual extended Kalman filter and charging voltage curve // Electrochimica Acta. – 2019. – Vol. 296. – P. 1009–1017.
  14. Wang Q. et al. Power battery state of charge estimation based on extended Kalman filter // Journal of Renewable and Sustainable Energy. – 2019. – Vol. 11, No. 1. – P. 014302.
  15. Wang Y., Chen Z. A framework for state-of-charge and remaining discharge time prediction using unscented particle filter // Applied Energy. – 2020. – Vol. 260. – P. 114324.
  16. Wei Z. et al. Load current and state-of-charge coestimation for current sensor-free lithium-ion battery // IEEE Trans. on Power Electronics. – 2021. – Vol. 36, No. 10. – P. 10970–10975.
  17. Xi Z. et al. Learning of battery model bias for effective state of charge estimation of lithium-ion batteries // IEEE Trans. on Vehicular Technology. – 2019. – Vol. 68, No. 9. – P. 8613–8628.
  18. Xia Z., Qahouq J. A. A. State-of-charge balancing of lithium-ion batteries with state-of-health awareness capability // IEEE Trans. on Industry Applications. – 2020. – Vol. 57, No. 1. – P. 673–684.
  19. Xiong R. et al. A set membership theory based parameter and state of charge co-estimation method for all-climate batteries // Journal of Cleaner Production. – 2020. – Vol. 249. – P. 119380.
  20. Xiong X. et al. A novel practical state of charge estimation method: an adaptive improved ampere-hour method based on composite correction factor // Int. Journal of Energy Research. – 2020. – Vol. 44, No. 14. – P. 11385–11404.
  21. Xu Y. et al. Online identification of battery model parameters and joint state of charge and state of health estimation using dual particle filter algorithms // Int. Journal of Energy Research. – 2022. – Vol. 46, No. 14. – P. 19615–19652.
  22. Xuan D. J. et al. Real-time estimation of state-of-charge in lithium-ion batteries using improved central difference transform method // Journal of Cleaner Production. – 2020. – Vol. 252. – P. 119787.
  23. Yang B., Wang Y., Zhan Y. Lithium battery state-of-charge estimation based on a Bayesian optimization bidirectional long short-term memory neural network // Energies. – 2022. – Vol. 15, No. 13. – P. 4670.
  24. Yang F. et al. State-of-charge estimation of lithium-ion batteries via long short-term memory network // IEEE Access. – 2019. – Vol. 7. – P. 53792–53799.
  25. Yang F. et al. State-of-charge estimation of lithium-ion batteries using LSTM and UKF // Energy. – 2020. – Vol. 201. – P. 117664.
  26. Zhang K. et al. State of charge estimation for lithium battery based on adaptively weighting cubature particle filter // IEEE Access. – 2019. – Vol. 7. – P. 166657–166666.
  27. Zhang R. et al. State of the art of lithium-ion battery SOC estimation for electrical vehicles // Energies. – 2018. – Vol. 11, No. 7. – P. 1820.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).