Determining the architecture of a neural network in the problem of estimating the state of the battery charge
- Authors: Yakovlev I.A.1, Elizarova A.V.1, Saitova G.A.1
-
Affiliations:
- Ufa State Aviation Technical University
- Issue: No 101 (2023)
- Pages: 97-122
- Section: Control of technological systems and processes
- URL: https://journals.rcsi.science/1819-2440/article/view/360593
- DOI: https://doi.org/10.25728/ubs.2023.101.6
- ID: 360593
Cite item
Full Text
Abstract
About the authors
Ilya Andreevich Yakovlev
Ufa State Aviation Technical University
Author for correspondence.
Email: ilya-yakovlev-1999@bk.ru
Ufa
Anastasia Valer'evna Elizarova
Ufa State Aviation Technical University
Email: elizarovaanastasia@gmail.com
Ufa
Guzel Askhatovna Saitova
Ufa State Aviation Technical University
Email: saitova@bk.ru
Ufa
References
- Галушкин Н. Е., Галушкина Н. Н. Анализ эмпирических зависимостей, описывающих разряд щелочных аккумуляторов // Электрохимическая энергетика. – 2005. – Т. 5, №1. – С. 43–50.
- Гейдаров П. Ш. Сравнительный анализ результатов обучений нейронной сети с вычисленными весовыми значениями и с генерацией весовых значений случайным образом // Автоматика и телемеханика. – 2020. – №7. – С. 56–78. Англ.: Geidarov P. Comparative analysis of the results of training a neural network with calculated weights and with random generation of the weights // Automation and Remote Control. – 2020. – Vol. 81:7. – P. 1211–1229.
- Ерин С. Литиевые аккумуляторы: от сырья до готовых химических источников тока // Технологии в электронной промышленности. – 2014. – №3. – С. 70–73.
- Саитова Г. А., Елизарова А. В. Нейросетевая модель для оценки состояния заряженности литий-ионного аккумулятора // Перспективные информационные технологии (ПИТ–2021) [Электронный ресурс]: труды Международной научно-технической конференции / Под ред. С. А. Прохорова. – Электрон. текстовые и граф. дан. – Самара: Изд-во Самарского научного центра РАН, 2021. – С. 288–293.
- Хайкин С. Нейронные сети. Полный курс. Второе издание: перевод с англ. – М.: Издательский дом «Вильямс», 2006. – 1104 с.
- Чудинов Е. А., Ткачук С. А., Шишко В. С. Технологические основы производства литий-ионного аккумулятора // Электрохимическая энергетика. – 2015. – Т. 15, №2. – С. 84–92.
- Chang W. Y. The state of charge estimating methods for battery: A review // International Scholarly Research Notices. – 2013. – Vol. 2013. – 8 p.
- Li S. et al. State-of-charge estimation of lithium-ion batteries in the battery degradation process based on recurrent neural network // Energies. – 2021. – Vol. 14, No. 2. – P. 306.
- Tang X. et al. Li-ion battery parameter estimation for state of charge // IEEE American Control Conference (ACC–2011). – IEEE, 2011. – P. 941–946.
- Tian J. et al. Flexible battery state of health and state of charge estimation using partial charging data and deep learning // Energy Storage Materials. – 2022. – Vol. 51. – P. 372–381.
- Vidal C. et al. Machine learning applied to electrified vehicle battery state of charge and state of health estimation: State-of-the-art // IEEE Access. – 2020. – Vol. 8. – P. 52796–52814.
- Wang K. et al. State of charge estimation of composite energy storage systems with supercapacitors and lithium batteries // Complexity. – 2021. – Vol. 2021.
- Wang L. et al. State of charge estimation for LiFePO4 battery via dual extended Kalman filter and charging voltage curve // Electrochimica Acta. – 2019. – Vol. 296. – P. 1009–1017.
- Wang Q. et al. Power battery state of charge estimation based on extended Kalman filter // Journal of Renewable and Sustainable Energy. – 2019. – Vol. 11, No. 1. – P. 014302.
- Wang Y., Chen Z. A framework for state-of-charge and remaining discharge time prediction using unscented particle filter // Applied Energy. – 2020. – Vol. 260. – P. 114324.
- Wei Z. et al. Load current and state-of-charge coestimation for current sensor-free lithium-ion battery // IEEE Trans. on Power Electronics. – 2021. – Vol. 36, No. 10. – P. 10970–10975.
- Xi Z. et al. Learning of battery model bias for effective state of charge estimation of lithium-ion batteries // IEEE Trans. on Vehicular Technology. – 2019. – Vol. 68, No. 9. – P. 8613–8628.
- Xia Z., Qahouq J. A. A. State-of-charge balancing of lithium-ion batteries with state-of-health awareness capability // IEEE Trans. on Industry Applications. – 2020. – Vol. 57, No. 1. – P. 673–684.
- Xiong R. et al. A set membership theory based parameter and state of charge co-estimation method for all-climate batteries // Journal of Cleaner Production. – 2020. – Vol. 249. – P. 119380.
- Xiong X. et al. A novel practical state of charge estimation method: an adaptive improved ampere-hour method based on composite correction factor // Int. Journal of Energy Research. – 2020. – Vol. 44, No. 14. – P. 11385–11404.
- Xu Y. et al. Online identification of battery model parameters and joint state of charge and state of health estimation using dual particle filter algorithms // Int. Journal of Energy Research. – 2022. – Vol. 46, No. 14. – P. 19615–19652.
- Xuan D. J. et al. Real-time estimation of state-of-charge in lithium-ion batteries using improved central difference transform method // Journal of Cleaner Production. – 2020. – Vol. 252. – P. 119787.
- Yang B., Wang Y., Zhan Y. Lithium battery state-of-charge estimation based on a Bayesian optimization bidirectional long short-term memory neural network // Energies. – 2022. – Vol. 15, No. 13. – P. 4670.
- Yang F. et al. State-of-charge estimation of lithium-ion batteries via long short-term memory network // IEEE Access. – 2019. – Vol. 7. – P. 53792–53799.
- Yang F. et al. State-of-charge estimation of lithium-ion batteries using LSTM and UKF // Energy. – 2020. – Vol. 201. – P. 117664.
- Zhang K. et al. State of charge estimation for lithium battery based on adaptively weighting cubature particle filter // IEEE Access. – 2019. – Vol. 7. – P. 166657–166666.
- Zhang R. et al. State of the art of lithium-ion battery SOC estimation for electrical vehicles // Energies. – 2018. – Vol. 11, No. 7. – P. 1820.
Supplementary files


