Model of encoding time intervals by active agents

Cover Page

Cite item

Full Text

Abstract

Interval time coding, i.e. the ability to perceive and estimate duration in the range from seconds to minutes, is one of the key cognitive processes underlying the adaptive behavior of biological species. This ability allows individuals to extract temporal patterns from the environment, optimize resource extraction strategies, coordinate communication, and form forecasts about future events. The paper describes a model of an active agent with an internal structure represented by an ensemble capable of generating rhythmic activity in given time intervals. The ensemble consists of three nodes: a half-center oscillator (two nodes exciting each other in antiphase) and a trigger node with memory. The half-center oscillator excites a trigger that accumulates excitation in memory. When excitation reaches a threshold value, the trigger is activated and, thus, transmits a signal to the agent. The trigger activation frequency depends on its parameters: receptor weights, discount coefficient, threshold value. The proposed model of temporal coding by such agents demonstrates properties inherent in biological systems: compliance with Weber's law (direct dependence of the variation of the estimate on the duration of the signal), memory fading in the absence of a stimulus, a return to homeostatic parameters, and a shift in estimates to average values. Research in the field of biologically inspired interval coding not only deepens our understanding of time perception, evaluation, and prediction, but also stimulates the development of adaptive AI systems, robotics, and human-machine interfaces.

About the authors

Liudmila Yur'evna Zhilyakova

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: zhilyakova@ipu.ru
Moscow

Nikolay Il'ich Bazenkov

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: bazenkov@ipu.ru
Moscow

References

  1. 1. КУЛИЕВА А.К., БЕРЕЗНЕР Т.А., ШИШУНОВА А.Н. и др. Когнитивные теории восприятия времени // Вест-ник Санкт-Петербургского университета. Психология. – 2025. – Т. 15. – Вып. 1. – С. 51–65.2. BALCI F., SIMEN P. Neurocomputational Models of Inter-val Timing: Seeing the Forest for the Trees // Neurobiology of Interval Timing. – 2024. – P. 51–78.3. BIGUS E.R., LEE H.W., BOWLER J.C. et al. Medial ento-rhinal cortex mediates learning of context-dependent inter-val timing behavior // Nature Neuroscience. – 2024. – Vol. 27, No. 8. – P. 1587–1598. 4. BUONOMANO D.V., LAJE R. Population clocks: motor timing with neural dynamics // Trends in Cognitive Sciences. – 2010. – Vol. 14, No. 12. – P. 520–527.5. CHHABRIA V.A., JIANG W., KAHNG A.B. et al. A Ma-chine Learning Approach to Improving Timing Consistency between Global Route and Detailed Route // arXiv:2305.06917. – 2023.6. CHURCH R.M., GIBBON J. Temporal generalization // Journal of Experimental Psychology: Animal Behavior Pro-cesses. – 1982. – Vol. 8, No. 2. – P. 165.7. DEVERETT B., FAULKNER R., FORTUNATO M. et al. Interval timing in deep reinforcement learning agents // arXiv:1905.13469. – 2019.8. GIBBON J. Scalar expectancy theory and Weber's law in animal timing // Psychological review. – 1977. – Vol. 84, No. 3. – P. 279.9. GIBBON J., CHURCH R.M. Representation of time // Cogni-tion. – 1990. – Vol. 37, No. 1–2. – P. 23–54.10. GOEL A., BUONOMANO D.V. Timing as an intrinsic prop-erty of neural networks: evidence from in vivo and in vitro experiments // Philosophical Transactions of the Royal So-ciety B: Biological Sciences. – 2014. – Vol. 369, No. 1637. – P. 20120460.11. HARTCHER-O’BRIEN J., BRIGHOUSE C., LEVITAN C.A. A single mechanism account of duration and rate processing via the pacemaker–accumulator and beat frequency models // Current Opinion in Behavioral Sciences. – 2016. – Vol. 8. – P. 268–275.12. PATON J.J., BUONOMANO D.V The neural basis of tim-ing: distributed mechanisms for diverse functions // Neuron. – 2018. – Vol. 98, No. 4. – P. 687–705.13. TACIKOWSKI P., KALENDER G., CILIBERTI D. et al. Human hippocampal and entorhinal neurons encode the temporal structure of experience // Nature. – 2024. – Vol. 635, No. 8037. – P. 160–167.14. TREISMAN M. Temporal discrimination and the indiffer-ence interval: Implications for a model of the "internal clock" // Psychological Monographs: General and Applied. – 1963. – Vol. 77, No. 13. – P. 1.15. TREISMAN M., FAULKNER A., NAISH P.L. et al. The in-ternal clock: Evidence for a temporal oscillator underlying time perception with some estimates of its characteristic fre-quency // Perception. – 1990. – Vol. 19, No. 6. – P. 705–742.16. XIE T., HUANG C., ZHANG Y. et al. Influence of recent trial history on interval timing // Neuroscience Bulletin. – 2023. – Vol. 39, No. 4. – P. 559–575.17. XU M., ZHANG S.Y., DAN Y. et al. M. Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex // Proc. of the National Academy of Sci-ences. – 2014. – Vol. 111, No. 1. – P. 480–485. 18. ZHILYAKOVA L. Modeling Neuron-Like Agents with a Network Internal Structure // Advances in Neural Computa-tion, Machine Learning, and Cognitive Research VII. NEU-ROINFORMATICS 2023. Studies in Computational Intelli-gence. – Cham: Springer Nature Switzerland, 2023. – Vol. 1120. – P. 300–307. 19. ZHILYAKOVA L. Direct and Inverse Problems of Time En-coding by Neuron-Like Agents // Advances in Neural Com-putation, Machine Learning, and Cognitive Research VIII. N I 2024. – Cham: Springer Nature Switzerland, 2024. – P. 353–361.20. ZHOU S., BUONOMANO D.V. Neural population clocks: Encoding time in dynamic patterns of neural activity // Be-havioral Neuroscience. – 2022. – Vol. 136, No. 5. – P. 374.21. ZHOU S., MASMANIDIS S.C., BUONOMANO D.V. Neural sequences as an optimal dynamical regime for the readout of time // Neuron. – 2020. – Vol. 108, No. 4. – P. 651–658. e5.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).