The use of llm models on single-board computers for the implementation of autonomous uav flight
- Авторлар: Anisimov R.O.1, Dvornikov A.D.1, Kulagin K.A.1, Titova S.A.2, Petrov K.V.2
-
Мекемелер:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Moscow Polytechnic University
- Шығарылым: № 117 (2025)
- Беттер: 246-264
- Бөлім: Information technologies in control
- URL: https://journals.rcsi.science/1819-2440/article/view/360566
- DOI: https://doi.org/10.25728/ubs.2025.117.12
- ID: 360566
Дәйексөз келтіру
Толық мәтін
Аннотация
Авторлар туралы
Rodion Anisimov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: rodion_anisimov@mail.ru
Moscow
Alexey Dvornikov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: applskyp@gmail.com
Moscow
Konstantin Kulagin
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: kka8686@mail.ru
Moscow
Sofya Titova
Moscow Polytechnic University
Email: titovas63059@gmail.com
Moscow
Konstantin Petrov
Moscow Polytechnic University
Email: r.92rab@gmail.com
Moscow
Әдебиет тізімі
1. ARIZA J.A., BAEZ H. Understanding the role of single-board computers in engineering and computer science edu-cation: a systematic literature review // Computer Applica-tions in Engineering Education. – 2022. – Vol. 30(1). – P. 304–329. – doi: 10.1002/cae.22439.2. AUSTIN J., OZI A., DRAZNER S. Program synthesis with large language models // Journal of Artificial Intelligence Research. – 2021. – Vol. 71. – P. 355–420.3. BROWN T.B. et al. Language models are few-shot learners // arXiv:2005.14165. – 2020. – 75 p.4. CHEN K., WILLIAMS D., TAYLOR M. SparseGPT: prun-ing large language models for embedded applications // Journal of Artificial Intelligence Research. – 2024. – Vol. 55. – P. 213–229.5. CHEN M., TWIGHT B., LEWIS M. Evaluating large lan-guage models trained on code // arXiv:2107.03374. – 2021.6. DETTMERS T., ZETTLEMOYER L., LEWIS M. LLM.int8(): 8-bit matrix multiplication for transformers at scale // arXiv:2208.07339. – 2022.7. JOHNSON T., LEE M., CARTER P. Autonomous aerial ex-ploration using compact language models. MIT computer science and artificial intelligence laboratory // Technical Report MIT-CSAIL-TR-2024-03. – 2024.8. KIM S., PAK D., LEE J. Energy consumption analysis of LLM-powered UAVs // Journal of Unmanned Aerial Systems. – 2024. – Vol. 12, No. 3. – P. 178–192.9. KIM Y., PARK J., SHIN J. PQK: practical quantization and pruning for on-device vision transformers // arXiv:2106.14681. – 2021.10. LEE D., SMITH R., PARKER A. MiniLLM: extreme quanti-zation for large language models on resource-constrained platforms // Proc. of the Conf. on Machine Learning and Systems. – 2024. – P. 1243–1255.11. LIU D., LI H., SHEN Y., et al. KeepEdge: lightweight real-time detection for UAV applications // IEEE Trans. on Indus-trial Informatics. – 2023. – Vol. 19(4). – P. 2873–2885.12. MULLER A., SCHMIDT K., WEBER R. Emergency re-sponse drone system with on-board decision making // ETH Zurich Robotics and Perception Group Research Reports. – 2023.13. RAMIREZ M., AL-HADITI F., NEIM S. DroneGPT: natural language control for unmanned aerial vehicles // Stanford AI Lab Technical Report, SAIL-TR-2023-04. – 2023.14. SU J. et al. RoFormer: enhanced transformer with rotary position embedding // arXiv:2104.09864. – 2021.15. TING L., JOHNSON M., CHEN K. Performance evaluation of edge computing platforms for AI applications in UAVs // IEEE Trans. on Robotics and Automation. – 2023. – Vol. 38, No. 2. – P. 112–127.16. VAN X., BROWN T., ANDERSON J. DistilLLM: knowledge distillation methods for efficient deployment of language models in UAVs // Int. Conf. on Robotics and Automation (ICRA). – 2023. – P. 775–782.17. VASWANI A. et al. Attention is all you need // 31st Conf. on Neural Information Processing Systems (NIPS–2017), Long Beach, CA, USA. – arXiv:1706.03762v7. – 2 Aug 2023. – P. 1–15.18. ZHANG Y., LI W., MARTINEZ K. Hybrid LLM-traditional architectures for autonomous UAV navigation // Robotics and Autonomous Systems Journal. – 2024. – Vol. 152. – P. 45–62.
Қосымша файлдар


