Identification of rfid tags from a sensor field using uavs
- Autores: Abramian V.V.1
-
Afiliações:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Edição: Nº 117 (2025)
- Páginas: 220-245
- Seção: Information technologies in control
- URL: https://journals.rcsi.science/1819-2440/article/view/360565
- DOI: https://doi.org/10.25728/ubs.2025.117.11
- ID: 360565
Citar
Texto integral
Resumo
Palavras-chave
Sobre autores
Vilmen Abramian
V.A. Trapeznikov Institute of Control Sciences of RAS
Autor responsável pela correspondência
Email: abramian.vl@phystech.edu
Moscow
Bibliografia
1. CHOI H.W., KIM H.J., KIM S.K. An Overview of DroneApplications in the Construction Industry // Drones. – 2023. –Vol. 7, No. 8. – Art. No. 515. 2. FINKENZELLER K. RFID Handbook. – New York: JohnWiley and Sons, 2003. 3. GOPE P., MILLWOOD O., SAXENA N. A Provably SecureAuthentication Scheme for RFID-Enabled UAV Applications //Computer Communications. – 2021. – Vol. 166. – P. 19–25. 4. GORTSCHACHER L.J., GROSINGER J. UHF RFID SensorSystem Using Tag Signal Patterns: Prototype System // IEEEAntennas and Wireless Propagation Letters. – 2019. – Vol. 18,No. 10. – P. 2209–2213. 5. LARIONOV A.A., IVANOV R.E., VISHNEVSKY V.M.UHF RFID in Automatic Vehicle Identification: Analysis andSimulation // IEEE J. Radio Freq. Identif. – 2017. – Vol. 1,Iss. 1. – P. 3–12. – doi: 10.1109/JRFID.2017.2751592. 6. LAZARO A., GIRBAU D., VILARINO R. Effects ofinterferences in UHF RFID systems // Progress InElectromagnetics Research. – 2009. – Vol. 98. – P. 425–443. 7. LI C. et al. ReLoc 2.0: UHF-RFID Relative Localizationfor Drone-Based Inventory Management // IEEE Trans. onInstrumentation and Measurement. – 2021. – Vol. 70. – P. 1–13. – Art. No. 8003313. – doi: 10.1109/TIM.2021.3069377. 8. LONGHI M., MARROCCO G. Ubiquitous Flying SensorAntennas: Radiofrequency Identification Meets Micro Drones //IEEE Journal of Radio Frequency Identification. – 2017. –Vol. 1, No. 4. – P. 291–299. 9. LONGHI M., CASATI G., LATINI D. RFIDrone: PreliminaryExperiments and Electromagnetic Models // Proc. of the 2016URSI Int. Symposium on Electromagnetic Theory (EMTS-2016). – 2016. – P. 450–453. 10. LUBNA et al. IoT-Enabled Vacant Parking Slot DetectionSystem Using Inkjet-Printed RFID Tags // IEEE SensorsJournal. – 1 April 2023. – Vol. 23, No. 7. – P. 7828–7835. 11. MA Y. et al. RAPP: A Radio Tomography Localization MethodCharacterized by Performance Parameterization in Rapid-Moving RFID System // IEEE Trans. on Vehicular Technology. –2023. – Vol. 72, No. 1. – P. 1265–1278. 12. MOHSAN S.A.H., OTHMAN N.Q.H., LI Y. et al. UnmannedAerial Vehicles (UAVs): Practical Aspects, Applications, OpenChallenges, Security Issues, and Future Trends // IntelligentService Robotics. – 2023. – Vol. 16, No. 1. – P. 109–137. 13. NIKITIN P.V., RAO K.V.S. Performance limitations of passiveUHF RFID systems // IEEE Antennas and PropagationSymposium. – 2006. – P. 1011–1014. 14. QUINO J., MAJA J.M., ROBBINS J. et al. RFID and Drones:The Next Generation of Plant Inventory // Agri. Engineering. –2021. – Vol. 3, No. 2. – P. 168–181. 15. QUINO J., MAJA J.M., ROBBINS J. et al. The Relationshipbetween Drone Speed and the Number of Flights in RFID TagReading for Plant Inventory // Drones. – 2022. – Vol. 6, No. 1. –doi: 10.3390/drones6010002. 16. EPC TM Radio-Frequency Identity Protocols Generation-2 UHFRFID Standard. Specification for RFID Air Interface Protocolfor Communications at 860 MHz – 960 MHz, rel. 2.1. –Wellington: EPCGlobal, 2015. 17. SHARMA D.K., MAHTO R.V., HARPER CH. et al. Role ofRFID Technologies in Transportation Projects: A Review // Int.Journal of Technology Intelligence and Planning. – 2020. –Vol. 12, No. 4. – P. 349–377. 18. TAJIN M.A.S., JACOVIC M., DION G. et al. UHF RFIDChannel Emulation Testbed for Wireless IoT Systems // IEEEAccess. – 2021. – Vol. 9. – P. 68523–68534. – doi: 10.1109/ACCESS.2021.3077845. 19. XU H., YIN X., ZHU F. et al. RF-Ray: Sensing Objects inthe Package via RFID Systems // IEEE Systems Journal. –March 2023. – Vol. 17, No. 1. – P. 558–568. – doi: 10.1109/JSYST.2022.3196462. 20. XUE C., LI T., LI Y. et al. Radio-Frequency Identification forDrones With Nonstandard Waveforms Using Deep Learning //IEEE Transactions on Instrumentation and Measurement. –2023. – Vol. 72. – P. 1–13. – Art. No. 5503713. – doi: 10.1109/TIM.2023.3306822.
Arquivos suplementares


