Analysis of motion separation by control for two identical pendulums
- Authors: Suliman B.1, Fradkov A.L.2
-
Affiliations:
- Aleppo University, Syria, Saint Petersburg State University
- Institute for Problems in Mechanical Engineering RAS, Saint Petersburg State University
- Issue: No 117 (2025)
- Pages: 171-187
- Section: Control systems analysis and design
- URL: https://journals.rcsi.science/1819-2440/article/view/360562
- DOI: https://doi.org/10.25728/ubs.2025.117.8
- ID: 360562
Cite item
Full Text
Abstract
The paper studies the possibility of separating the motions of two identical dynamic systems using a single scalar action generated by a feedback mechanism. Such a problem may arise with underactuated control of oscillatory mechanical systems, with selective control of individual molecule systems, etc. A typical case is studied when separation must be performed based on the energy level of subsystems. To solve the problem, it is proposed to synthesize feedback control. The control algorithm is based on the speed gradient method extended to account for constraints. To design control under constraints the inner penalty function is used. Its operability in this case follows from the invariance of the subsystem energies in the absence of control. It is shown that even a small difference in the initial states of the controlled systems allows the required separation to be achieved, and the result depends weakly on significant changes in the parameters of the controlled system and on the presence of disturbances. Finally, the result depends weakly on the parameters of the controller (gain gamma) and the strength of the penalty alpha.
About the authors
Bashar Suliman
Aleppo University, Syria, Saint Petersburg State University
Author for correspondence.
Email: st102994@student.spbu.ru
Russia
Alexander L'vovich Fradkov
Institute for Problems in Mechanical Engineering RAS, Saint Petersburg State University
Email: fradkov@mail.ru
Russia
References
1. АНДРИЕВСКИЙ Б.Р., ФРАДКОВ А.Л. Метод скоростногоградиента и его приложения // Автоматика и телемехани-ка. — 2021. — №9. — С. 3–72; Autom. Remote Control. —2021. — Vol. 82, No. 9. — P. 1463–1518. 2. АНАНЬЕВСКИЙ М.С. Селективное управление наблюдае-мыми в ансамбле квантовомеханических молекулярных си-стем // Автоматика и телемеханика. — 2007. — №8. —С. 32–43; Autom. Remote Control. — 2007. — Vol. 68, No. 8. —P. 1322–1332. 3. ФРАДКОВ А.Л. Схема скоростного градиента и ее при-менение в задачах адаптивного управления // Автоматикаи телемеханика. — 1979. — №9. — С. 90–101; Autom. RemoteControl. — 1980. — Vol. 40, No. 9. — P. 1333–1342. 4. ФРАДКОВ А.Л. Адаптивное управление в сложных систе-мах. — М.: Наука, 1990. — 296 с. 5. ANANYEVSKII M.S., FRADKOV A.L., NIJMEIJER H.Control of Mechanical Systems with Constraints: TwoPendulums Case Study // Proc. 17th IFAC World Congress. —Seoul, 2008. — P. 7690–7694. 6. ANANYEVSKII M.S., FRADKOV A.L., NIJMEIJER H.Swinging control of two-pendulum system under energyconstraints // Dynamics and Control of Hybrid MechanicalSystems / Ed. by G. Leonov, H. Nijmeijer, A. Pogromsky,A. Fradkov. — Singapore: World Scientific, 2010. — P. 167–180. 7. FIACCO A.V., MCCORMICK G.P. Nonlinear Programming:Sequential Unconstrained Minimization Techniques. — SIAM,1990. — 210 p. 8. FRADKOV A.L. Cybernetical physics. — Berlin, Heidelberg:Springer-Verlag, 2007. — 241 p. 9. FRADKOV A.L., MIROSHNIK I.V., NIKIFOROV V.O.Nonlinear and adaptive control of complex systems. —Dordrecht: Kluwer Academic Publishers, 1999. — 500 p. 10. FRADKOV A.L., POGROMSKY A.YU. Introduction toControl of Oscillations and Chaos. — Singapore: WorldScientific, 1998. — 320 p. 11. KHALIL H.K. Nonlinear systems. — Upper Saddle River:Prentice-Hall, 2002. — 750 p. 12. NIJMEIJER H., VAN DER SCHAFT A.J. Nonlinear dynamicalcontrol systems. — New York: Springer-Verlag, 1990. — 467 p. 13. POGROMSKY A.YU., BELYKH V.N., NIJMEIJER H. A studyof controlled synchronization of Huijgens’ pendula // Groupcoordination and cooperative control / Ed. by K.Y. Pettersen,J.T. Gravdahl, H. Nijmeijer. — Berlin, Heidelberg: Springer-Verlag, 2006. — Vol. 336. — P. 205–216. 14. TOMCHINA O.P., TOMCHIN D.A., FRADKOV A.L. Speed-gradient control of passing through resonance in one-and two-dimensional motion // 16th IFAC World Congress Autom.Control. — June 2005. — 6 p.
Supplementary files


