Decomposition of spectral expansions of the quadratic lyapunov function on state-space variables
- Authors: Kutyakov E.Y.1
-
Affiliations:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Issue: No 116 (2025)
- Pages: 68-89
- Section: Mathematical control theory
- URL: https://journals.rcsi.science/1819-2440/article/view/307000
- ID: 307000
Cite item
Abstract
Spectral decomposition of the quadratic Lyapunov function is already known. The modal contribution and modal interaction are the main components of this decomposition, which form the basis of Lyapunov modal analysis. This paper presents the results of a further expansion of these spectral components into individual state variables and into their pairwise combinations. The obtained result can also be considered as a decomposition of the quadratic Lyapunov function not only by elements of the spectrum of the dynamical system (by modes), but also by elements of the state space. On the basis of the proposed decomposition method, new Lyapunov modal analysis indices are formulated, which allow one to evaluate the contribution of individual eigenvalues or their pairwise interaction, but in connection only with the part of the external perturbation that is associated with a particular state variable or a pair of such variables. This, in particular, makes it possible to comprehensively evaluate the joint influence of both the mode and the associated state variable on the energy of the system output signal. It is assumed that the main area of application of the new decompositions will be related to the problems of the model order reduction of the large dynamical systems.
About the authors
Evgeniy Yur'evich Kutyakov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: evgeniykutyakov@gmail.com
Moscow
References
- ЯДЫКИН И.Б. О свойствах грамианов непрерывных си-стем управления // Автоматика и телемеханика. – 2010. –№6. – С. 39–50.
- ЯДЫКИН И.Б., ГАЛЯЕВ А.А. О методах вычисления гра-мианов и их использовании в анализе линейных динамиче-ских систем // Автоматика и телемеханика. – 2013. – №2. –С. 53–74.
- ЯДЫКИН И.Б., ИСКАКОВ А.Б. Спектральные разложениядля решений уравнений Сильвестра - Ляпунова - Крейна //Доклады академии наук. – 2017. – Т. 472, №4. – С. 388–392.
- AHMAD A.M., DE ABREU-GARCIA J.A. Continuous timeand discrete time Lyapunov equations: review and newdirections // Control and Dynamic Systems – 1996. – Vol. 74. –P. 253–307.
- BOUKHOUIMA A., HATTAF K., LOTFI E.M. et al. Lyapunovfunctions for fractional-order systems in biology: Methods andapplications // Chaos, Solitons & Fractals. – 2020. – Vol. 140. –P. 110224.
- BROCKETT R.W. Finite Dimensional Linear Systems – NewYork:Wiley, 1970. – 244 p.
- CHEN C., WANG X.W., LIU Y.Y Stability of ecologicalsystems: A theoretical review // Physics Reports. – 2024. –Vol. 1088. – P. 1–41.
- TANECO-HERNANDEZ M.A., VARGAS-DE-LEON C.Stability and Lyapunov functions for systems withAtangana–Baleanu Caputo derivative: An HIV/AIDS epidemicmodel // Chaos, Solitons & Fractals. – 2020. – Vol. 132. –P. 109586.
- ISKAKOV A.B., KUTYAKOV E.Y., KATAEV D.E. Locatingthe source of forced oscillations on the basis of Lyapunov modalanalysis // IFAC-PapersOnLine. – 2024. – Vol. 58, No. 13. –P. 685–690.
- ISKAKOV A.B., KUTYAKOV E.Y., TOMIN N.V. et al.Estimation of the location of inter-area oscillations and theirinteractions in electrical power systems using Lyapunov modalanalysis // Int. J. of Electrical Power & Energy Systems. –2023. – Vol. 153. – P. 109374.
- ISKAKOV A.B., TOMIN N.V., YADYKIN I.B. et al. SelectiveLQ wide area damping of power networks based on the spectraldecomposition of Gramians // IFAC-PapersOnLine. – 2022. –Vol. 55, No. 9. – P. 152–157.
- ISKAKOV A.B., YADYKIN I.B. Lyapunov modal analysis andparticipation factors applied to small-signal stability of powersystems // Automatica. – 2021. – Vol. 132. – P. 109814.
- KUNDUR P. Power system stability and control – New York:McGraw-Hill, 1994. – 1200 p.
- KUTYAKOV E.Y., DUSHIN S.V., ABRAMENKOV A.N.et al. Quadratic approximation of nonlinear models of thesynchronous machine using the bilinear representation // Proc.of the 13th Int. Conf. «Management of Large-Scale SystemDevelopment» (MLSD). – 2020.
- LI F., ZHENG W.X., XU S. et al. A novel e-dependent Lyapunovfunction and its application to singularly perturbed systems //Automatica. – 2021. – Vol. 133. – P. 109749.
- LI J., CHEN Y., XI X. et al. An analytical approach toapplying the Lyapunov direct method to an epidemic modelwith age and stage structures // Nonlinear Analysis: Real WorldApplications. – 2025. – Vol. 84. – P. 104312.
- LIU L., LIU Y.J., LI D. et al. Barrier Lyapunov Function-BasedAdaptive Fuzzy FTC for Switched Systems and Its Applicationsto Resistance–Inductance–Capacitance Circuit System // IEEETrans. on Cybernetics. – 2020. – Vol. 50, No. 8. – P. 3491–3502.
- MAGHENEM M., POSTOYAN R., LORIA A. et al. Lyapunov-based synchronization of networked systems: From continuous-time to hybrid dynamics // Annual Reviews in Control. – 2020. –Vol. 50. – P. 335–342.
- MASON P., CHITOUR Y., SIGALOTTI M. On universalclasses of Lyapunov functions for linear switched systems //Automatica. – 2023. – Vol. 155. – P. 111155.
- PEREZ-ARRIAGA I.J., VERGHESE G.C., SCHWEPPE F.C.Selective modal analysis with applications to electric powersystems, part I: heuristic introduction // IEEE Trans. on PowerApparatus and Systems. – 1982. – Vol. PAS-101, No. 9. –P. 3117–3125.
- RUEDA-ESCOBEDO J.G., MORENO J.A. Strong Lyapunovfunctions for two classical problems in adaptive control //Automatica. – 2021. – Vol. 124. – P. 109250.
- SUN W., SU S.F., WU Y. et al. Adaptive Fuzzy ControlWith High-Order Barrier Lyapunov Functions for High-OrderUncertain Nonlinear Systems With Full-State Constraints //IEEE Trans. on Cybernetics. – 2020. – Vol. 50, No. 8. –P. 3424–3432.
- ZHANG R., REN X. Lyapunov functions for some epidemicmodel with high risk and vaccinated class // AppliedMathematics Letters. – 2025. – Vol. 163. – P. 109437.
- ZHOU P., HU X., ZHU Z. et al. What is the most suitableLyapunov function? // Chaos, Solitons & Fractals. – 2021. –Vol. 150. – P. 111154.
Supplementary files


