Latent consensus protocol with weak background links and time-delay
- Authors: Khomutov D.K.1
-
Affiliations:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Issue: No 114 (2025)
- Pages: 138-155
- Section: Networking in control sciences
- URL: https://journals.rcsi.science/1819-2440/article/view/291938
- ID: 291938
Cite item
Full Text
Abstract
About the authors
Dmitriy Konstantinovich Khomutov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: homutov_dk@mail.ru
Moscow
References
- АГАЕВ Р.П., ЧЕБОТАРЕВ П.Ю. Лапласовские спектры ор-графов и их приложения // Автоматика и телемеханика. –2005. – №5. – С. 47–62.
- АГАЕВ Р.П., ЧЕБОТАРЕВ П.Ю. Модели латентного кон-сенсуса // Автоматика и телемеханика. – 2017. – №1. –С. 106–120.
- ГУБАНОВ Д.А. Методы анализа информационного влиянияв активных сетевых структурах // Автоматика и телемеха-ника. – 2022. – №5. – С. 87–101.
- ГУБАНОВ Д.А., НОВИКОВ Д.А., ЧХАРТИШВИЛИ А.Л.Социальные сети: модели информационного влияния, управ-ления и противоборства – М.: Изд-во физ.-мат. лит-ры,2010. – 228 с.
- ПОНТРЯГИН Л.С. О нулях некоторых элементарныхтрансцендентных функций // Известия АН СССР. Сер. ма-тем. – 1942. – Т. 6, №3. – С. 115–134.
- ПРОСКУРНИКОВ А.В., ФРАДКОВ А.Л. Задачи и мето-ды сетевого управления // Автоматика и телемеханика. –2016. – №10. – С. 3–39.
- ЦЫПКИН Я.З. Устойчивость систем с запаздывающей об-ратной связью // Автоматика и телемеханика. – 1946. –Т. 7, №2–3. – С. 107–129.
- ЭЛЬСГОЛЬЦ Л.Э. Введение в теорию дифференциальныхуравнений с отклоняющимся аргументом. – М.: Наука,1971. – 295 с.
- AGAEV R., CHEBOTAREV P. Forest matrices around theLaplacian matrix // Linear Algebra and Its Applications. –2002. – Vol. 356, No. 1–3. – P. 253–274.
- AGAEV R.P., KHOMUTOV D. On the Asymptotic Behaviorof a Multiagent Systems with Arbitrary Structure and Time-Delays // Proc. of the 16th Int. Conf. on Stability andOscillations of Nonlinear Control Systems (Pyatnitskiy’sConference). Moscow: IEEE, 2022. – P. 1–3.
- ALTINAS Y., ENGIN S., BUDAK E. Analytical stabilityprediction and design of variable pitch cutters // Journalof Manufacturing Science and Engineering. – 1999. –Vol. 121, No. 5. – P. 173–178.
- ARYANKIA K., SELMIC R.R. Neuro-Adaptive FormationControl of Nonlinear Multi-Agent Systems With CommunicationDelays // Journal of Intelligent & Robotic Systems. – 2023. –Vol. 109, No. 4. – P. 92 (1–15).
- AVEDISOV S.S., BANSAL G., OROSZ G. Impacts ofconnected automated vehicles on freeway traffic patternsat different penetration levels // IEEE Trans. on IntelligentTransportation Systems. – 2020. – Vol. 23, No. 5. –P. 4305–4318.
- BAKER C.T.H., BOCHAROV G.A., RIHAN F.A. A report onthe use of delay differential equations in numerical modellingin the biosciences // Manchester Centre for ComputationalMathematics, Manchester. – 1999. – No. 343. – P. 1–46.
- BALDIVIESO P.E., VEERMAN J.J.P. Stability conditions forcoupled autonomous vehicles formations // IEEE Trans. onControl of Network Systems. – 2021. – Vol. 8, No. 1. –P. 513–522.
- BANDO M. et al. Analysis of optimal velocity model withexplicit delay // Phys. Review E. – 1998. – Vol. 58, No. 5. –P. 5429–5435.
- BELAIR J., MACKEY M.C. Consumer memory and pricefluctuations in commodity markets: An integrodifferentialmodel // Journal of Dynamics and Differential Equations. –1989. – Vol. 1. – P. 299–325.
- BELINSKAIA A. et al. Short-delay neurofeedback facilitatestraining of the parietal alpha rhythm // Journal of NeuralEngineering. – 2020. – Vol. 17, No. 6. – P. 066012 (1–18).
- CAO Z. et al. Modeling and simulating urban traffic flow mixedwith regular and connected vehicles // IEEE Access. – 2021. –Vol. 9. – P. 10392–10399.
- CHAPLINSKAIA N., BAZENKOV N. Axonal Myelination asa Mechanism for Unsupervised Learning in Spiking NeuralNetworks // Proc. of the BICA – Procedia Computer Science,2023. – Cham, Switzerland: Springer. – 2024. – Vol. 1130. –P. 169–176.
- CHEBOTAREV N.G., MEIMAN N.N. The Routh-Hurwitzproblem for polynomials and entire functions // TrudyMatematicheskogo Instituta imeni VA Steklova. – 1949. –Vol. 26. – P. 3–331.
- COOMBES S., WEDGWOOD K.C.A. Neurodynamics. –Switherland: Springer, 2023. – 507 p.
- DE SOUZA F., STERN R. Calibrating microscopic car-following models for adaptive cruise control vehicles:Multiobjective approach // Journal of TransportationEngineering, Part A: Systems. – 2021. – Vol. 147, No. 1. –P. 04020150 (1–11).
- DING T.F. et al. Second-order bipartite consensus fornetworked robotic systems with quantized-data interactionsand time-varying transmission delays // ISA Trans. – 2021. –Vol. 108. – P. 178–187.
- DITTRICH M.A., FOHLMEISTER S. Cooperative multi-agentsystem for production control using reinforcement learning //CIRP Annals. – 2020. – Vol. 69, No. 1. – P. 389–392.
- DOMENTEANU A. et al. From Data to Insights:A Bibliometric Assessment of Agent-Based ModelingApplications in Transportation // Applied Sciences. – 2023. –Vol. 13, No. 23. – P. 12693 (1–37).
- FERNANDEZ-CAMACHO E., BORDONS-ALBA C. Modelpredictive control in the process industry. – London:Springer, 1995. – 239 p.
- GOLUBENETS V.O. Relaxation oscillations in a logisticequation with nonconstant delay // Mathematical notes. –2020. – Vol. 107. – P. 920–933.
- GOPOLSAMY K. Stability and oscillations in delaydifferential equations of population dynamics. – Dordrecht:Springer, 1992. – 502 p.
- KASHCHENKO I., KASCHENKO S. Infinite process offorward and backward bifurcations in the logistic equation withtwo delays // Nonlinear Phenomena in Complex Systems. –2019. – Vol. 22, No. 4. – P. 407–412.
- GU K., CHEN J., KHARITONOV V.L. Stability of time-delaysystems. – Berlin: Birkhäuser, 2003 – P. 356.
- HARA T., SUGIE J. Stability region for systems of differential-difference equations // Funkcialaj Ekvacioj. – 1996. –Vol. 39, No. 1. – P. 69–86.
- HERBRYCH J. et al. Dynamics of locally coupled agents withnext nearest neighbor interaction // Differential Equations andDynamical Systems. – 2021. – Vol. 29. – P. 487–509.
- ISLAM M.S., FARUQUE I.A. Insect visuomotor delayadjustments in group flight support swarm cohesion // ScientificReports. – 2023. – Vol. 13, No. 1. – P. 6407 (1–17).
- KOLMANOVSKII V., MYSHKIS A. Applied theory offunctional differential equations. – Dordrecht: KluwerAcademic Publishers, 1992. – 234 p.
- MACDONALD N. Biological delay systems: linear stabilitytheory. – Cambridge: Cambridge University Press, 1989. –235 p.
- NICULESCU S.I., LI X.G., CELA A. Counting characteristicroots of linear delay differential equations. Part I //Controlling Delay Dynamics: Advances in Theory, Methods andApplications. – 2022. – Vol. 604. – P. 117–155.
- NICULESCU S.I., BOUSSAADA I. Counting characteristicroots of linear delay differential equations. Part II //Controlling Delay Dynamics: Advances in Theory, Methods andApplications. – 2022. – Vol. 604. – P. 157–193.
- NOWZARI C., GARCIA E., CORT ´ ES J. Event-triggeredcommunication and control of networked systems for multi-agent consensus // Automatica. – 2019. – Vol. 105. – P. 1–27.
- OLFATI-SABER R., FAX J.A., MURRAY R.M. Consensus andcooperation in networked multi-agent systems // Proc. of theIEEE – 2007. – Vol. 95, No. 1. – P. 215–233.
- RIDDALLS C.E., BENNETT S. The stability of supply chains //Int. Journal of Production Research. – 2002. – Vol.40, No. 2. –P. 459–475.
- SILVA M.A.L. ET AL. A reinforcement learning-based multi-agent framework applied for solving routing and schedulingproblems // Expert Systems with Applications. – 2019. –Vol. 131. – P. 148–171.
- TSYPKIN Y.Z. MINGUE FU. Robust stability of time-delaysystems with an uncertain time-delay constant // Int. Journal ofcontrol. – 1993. – Vol. 57, No. 4. – P. 865–879.
- UGANDER J. Delay-dependent stability of genetic regulatorynetworks – Lund: Departament of Autimatic Control, LundUniversity, 2008. – 52 p.
- URENA R. et al. A social network based approach forconsensus achievement in multiperson decision making //Information Fusion. – 2019. – Vol. 47. – P. 72–87.
- VEERMAN J.J.P., KUMMEL E. Diffusion and consensuson weakly connected directed graphs // Linear Algebra and itsApplications. – 2019. – Vol. 578. – P. 184–206.
- ZHILYAKOVA L. KORESHKOV V., CHAPLINSKAIA N.Some Properties of Stochastic Matrices and Non-HomogeneousMarkov Chains Generated by Nonlinearities in the ResourceNetwork Model // Mathematics. – 2022. – Vol. 10, No. 25. –P. 4095 (1–17).
Supplementary files
