Latent consensus protocol with weak background links and time-delay

Cover Page

Cite item

Full Text

Abstract

Coordination in multiagent system with information influences and time-delay is considered. In particular, the case when consensus is not achieved for any vector of initial values was considered. Such a problem may arise in a multi-agent system with a weakly coupled structure, that is, when there are several leading agents or groups of agents. To achieve consensus, a latent consensus protocol with weak background links and time-delay was used. Using the Nyquist criterion applied by Tsypkin, a boundary value of time-delay was established, depending on the spectral properties of the Laplace matrix, and a condition for the independence of convergence from time-delay. With a decrease in the weights of background links, the boundary value of time-delay of the protocol under consideration approaches the one of the required protocol. It was found that in the case of convergence, the latent consensus protocol with background links converges to consensus for any vector of initial values, while the weights of background links can be arbitrarily small. Thus, the use of this protocol solves the above problem, and this study allows adapting other previously considered latent consensus protocols for multiagent systems with time-delay.

About the authors

Dmitriy Konstantinovich Khomutov

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: homutov_dk@mail.ru
Moscow

References

  1. АГАЕВ Р.П., ЧЕБОТАРЕВ П.Ю. Лапласовские спектры ор-графов и их приложения // Автоматика и телемеханика. –2005. – №5. – С. 47–62.
  2. АГАЕВ Р.П., ЧЕБОТАРЕВ П.Ю. Модели латентного кон-сенсуса // Автоматика и телемеханика. – 2017. – №1. –С. 106–120.
  3. ГУБАНОВ Д.А. Методы анализа информационного влиянияв активных сетевых структурах // Автоматика и телемеха-ника. – 2022. – №5. – С. 87–101.
  4. ГУБАНОВ Д.А., НОВИКОВ Д.А., ЧХАРТИШВИЛИ А.Л.Социальные сети: модели информационного влияния, управ-ления и противоборства – М.: Изд-во физ.-мат. лит-ры,2010. – 228 с.
  5. ПОНТРЯГИН Л.С. О нулях некоторых элементарныхтрансцендентных функций // Известия АН СССР. Сер. ма-тем. – 1942. – Т. 6, №3. – С. 115–134.
  6. ПРОСКУРНИКОВ А.В., ФРАДКОВ А.Л. Задачи и мето-ды сетевого управления // Автоматика и телемеханика. –2016. – №10. – С. 3–39.
  7. ЦЫПКИН Я.З. Устойчивость систем с запаздывающей об-ратной связью // Автоматика и телемеханика. – 1946. –Т. 7, №2–3. – С. 107–129.
  8. ЭЛЬСГОЛЬЦ Л.Э. Введение в теорию дифференциальныхуравнений с отклоняющимся аргументом. – М.: Наука,1971. – 295 с.
  9. AGAEV R., CHEBOTAREV P. Forest matrices around theLaplacian matrix // Linear Algebra and Its Applications. –2002. – Vol. 356, No. 1–3. – P. 253–274.
  10. AGAEV R.P., KHOMUTOV D. On the Asymptotic Behaviorof a Multiagent Systems with Arbitrary Structure and Time-Delays // Proc. of the 16th Int. Conf. on Stability andOscillations of Nonlinear Control Systems (Pyatnitskiy’sConference). Moscow: IEEE, 2022. – P. 1–3.
  11. ALTINAS Y., ENGIN S., BUDAK E. Analytical stabilityprediction and design of variable pitch cutters // Journalof Manufacturing Science and Engineering. – 1999. –Vol. 121, No. 5. – P. 173–178.
  12. ARYANKIA K., SELMIC R.R. Neuro-Adaptive FormationControl of Nonlinear Multi-Agent Systems With CommunicationDelays // Journal of Intelligent & Robotic Systems. – 2023. –Vol. 109, No. 4. – P. 92 (1–15).
  13. AVEDISOV S.S., BANSAL G., OROSZ G. Impacts ofconnected automated vehicles on freeway traffic patternsat different penetration levels // IEEE Trans. on IntelligentTransportation Systems. – 2020. – Vol. 23, No. 5. –P. 4305–4318.
  14. BAKER C.T.H., BOCHAROV G.A., RIHAN F.A. A report onthe use of delay differential equations in numerical modellingin the biosciences // Manchester Centre for ComputationalMathematics, Manchester. – 1999. – No. 343. – P. 1–46.
  15. BALDIVIESO P.E., VEERMAN J.J.P. Stability conditions forcoupled autonomous vehicles formations // IEEE Trans. onControl of Network Systems. – 2021. – Vol. 8, No. 1. –P. 513–522.
  16. BANDO M. et al. Analysis of optimal velocity model withexplicit delay // Phys. Review E. – 1998. – Vol. 58, No. 5. –P. 5429–5435.
  17. BELAIR J., MACKEY M.C. Consumer memory and pricefluctuations in commodity markets: An integrodifferentialmodel // Journal of Dynamics and Differential Equations. –1989. – Vol. 1. – P. 299–325.
  18. BELINSKAIA A. et al. Short-delay neurofeedback facilitatestraining of the parietal alpha rhythm // Journal of NeuralEngineering. – 2020. – Vol. 17, No. 6. – P. 066012 (1–18).
  19. CAO Z. et al. Modeling and simulating urban traffic flow mixedwith regular and connected vehicles // IEEE Access. – 2021. –Vol. 9. – P. 10392–10399.
  20. CHAPLINSKAIA N., BAZENKOV N. Axonal Myelination asa Mechanism for Unsupervised Learning in Spiking NeuralNetworks // Proc. of the BICA – Procedia Computer Science,2023. – Cham, Switzerland: Springer. – 2024. – Vol. 1130. –P. 169–176.
  21. CHEBOTAREV N.G., MEIMAN N.N. The Routh-Hurwitzproblem for polynomials and entire functions // TrudyMatematicheskogo Instituta imeni VA Steklova. – 1949. –Vol. 26. – P. 3–331.
  22. COOMBES S., WEDGWOOD K.C.A. Neurodynamics. –Switherland: Springer, 2023. – 507 p.
  23. DE SOUZA F., STERN R. Calibrating microscopic car-following models for adaptive cruise control vehicles:Multiobjective approach // Journal of TransportationEngineering, Part A: Systems. – 2021. – Vol. 147, No. 1. –P. 04020150 (1–11).
  24. DING T.F. et al. Second-order bipartite consensus fornetworked robotic systems with quantized-data interactionsand time-varying transmission delays // ISA Trans. – 2021. –Vol. 108. – P. 178–187.
  25. DITTRICH M.A., FOHLMEISTER S. Cooperative multi-agentsystem for production control using reinforcement learning //CIRP Annals. – 2020. – Vol. 69, No. 1. – P. 389–392.
  26. DOMENTEANU A. et al. From Data to Insights:A Bibliometric Assessment of Agent-Based ModelingApplications in Transportation // Applied Sciences. – 2023. –Vol. 13, No. 23. – P. 12693 (1–37).
  27. FERNANDEZ-CAMACHO E., BORDONS-ALBA C. Modelpredictive control in the process industry. – London:Springer, 1995. – 239 p.
  28. GOLUBENETS V.O. Relaxation oscillations in a logisticequation with nonconstant delay // Mathematical notes. –2020. – Vol. 107. – P. 920–933.
  29. GOPOLSAMY K. Stability and oscillations in delaydifferential equations of population dynamics. – Dordrecht:Springer, 1992. – 502 p.
  30. KASHCHENKO I., KASCHENKO S. Infinite process offorward and backward bifurcations in the logistic equation withtwo delays // Nonlinear Phenomena in Complex Systems. –2019. – Vol. 22, No. 4. – P. 407–412.
  31. GU K., CHEN J., KHARITONOV V.L. Stability of time-delaysystems. – Berlin: Birkhäuser, 2003 – P. 356.
  32. HARA T., SUGIE J. Stability region for systems of differential-difference equations // Funkcialaj Ekvacioj. – 1996. –Vol. 39, No. 1. – P. 69–86.
  33. HERBRYCH J. et al. Dynamics of locally coupled agents withnext nearest neighbor interaction // Differential Equations andDynamical Systems. – 2021. – Vol. 29. – P. 487–509.
  34. ISLAM M.S., FARUQUE I.A. Insect visuomotor delayadjustments in group flight support swarm cohesion // ScientificReports. – 2023. – Vol. 13, No. 1. – P. 6407 (1–17).
  35. KOLMANOVSKII V., MYSHKIS A. Applied theory offunctional differential equations. – Dordrecht: KluwerAcademic Publishers, 1992. – 234 p.
  36. MACDONALD N. Biological delay systems: linear stabilitytheory. – Cambridge: Cambridge University Press, 1989. –235 p.
  37. NICULESCU S.I., LI X.G., CELA A. Counting characteristicroots of linear delay differential equations. Part I //Controlling Delay Dynamics: Advances in Theory, Methods andApplications. – 2022. – Vol. 604. – P. 117–155.
  38. NICULESCU S.I., BOUSSAADA I. Counting characteristicroots of linear delay differential equations. Part II //Controlling Delay Dynamics: Advances in Theory, Methods andApplications. – 2022. – Vol. 604. – P. 157–193.
  39. NOWZARI C., GARCIA E., CORT ´ ES J. Event-triggeredcommunication and control of networked systems for multi-agent consensus // Automatica. – 2019. – Vol. 105. – P. 1–27.
  40. OLFATI-SABER R., FAX J.A., MURRAY R.M. Consensus andcooperation in networked multi-agent systems // Proc. of theIEEE – 2007. – Vol. 95, No. 1. – P. 215–233.
  41. RIDDALLS C.E., BENNETT S. The stability of supply chains //Int. Journal of Production Research. – 2002. – Vol.40, No. 2. –P. 459–475.
  42. SILVA M.A.L. ET AL. A reinforcement learning-based multi-agent framework applied for solving routing and schedulingproblems // Expert Systems with Applications. – 2019. –Vol. 131. – P. 148–171.
  43. TSYPKIN Y.Z. MINGUE FU. Robust stability of time-delaysystems with an uncertain time-delay constant // Int. Journal ofcontrol. – 1993. – Vol. 57, No. 4. – P. 865–879.
  44. UGANDER J. Delay-dependent stability of genetic regulatorynetworks – Lund: Departament of Autimatic Control, LundUniversity, 2008. – 52 p.
  45. URENA R. et al. A social network based approach forconsensus achievement in multiperson decision making //Information Fusion. – 2019. – Vol. 47. – P. 72–87.
  46. VEERMAN J.J.P., KUMMEL E. Diffusion and consensuson weakly connected directed graphs // Linear Algebra and itsApplications. – 2019. – Vol. 578. – P. 184–206.
  47. ZHILYAKOVA L. KORESHKOV V., CHAPLINSKAIA N.Some Properties of Stochastic Matrices and Non-HomogeneousMarkov Chains Generated by Nonlinearities in the ResourceNetwork Model // Mathematics. – 2022. – Vol. 10, No. 25. –P. 4095 (1–17).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».