On the modeling the behaviour of one markov process using the method of modeling random variables using intensities
- Authors: Zverkina G.A.1, Koshelev A.A.2
-
Affiliations:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- V.A. Trapeznikov Institute of Control Sciences of RAS, Moscow, Lomonosov Moscow State University
- Issue: No 111 (2024)
- Pages: 306-330
- Section: Simulation tools
- URL: https://journals.rcsi.science/1819-2440/article/view/289126
- DOI: https://doi.org/10.25728/ubs.2024.111.13
- ID: 289126
Cite item
Full Text
Abstract
In the past, the authors proposed a method for modeling of random variable using intensity which is one of the characteristics of the distribution function. The results of testing this method to simulate the behaviour of a stochastic model, specifically a model of a pair of recoverable dependent elements, are presented. The model under study’s behavior can be studied analytically by selecting the characteristics of periods of failure-free operation and recovery periods. Simulation modeling using both the ``classical’’ method and the method of modeling random variables by intensity yielded results. The availability factor behaviour of the model under study was compared to an analytical solution based on these results. The analytical solution was compared to numerical experiments to arrive at the following conclusion: the classical modeling method does not outperform the accuracy of modeling the behaviour of a random process using the method of modeling random variables using intensities.
About the authors
Galina Aleksandrovna Zverkina
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: zverkina@gmail.com
Moscow
Alexandr Anatol'evich Koshelev
V.A. Trapeznikov Institute of Control Sciences of RAS, Moscow, Lomonosov Moscow State University
Email: ФГБУН Институт проблем управления им. В.А. Трапезникова РАН, Москва, Московский государств
Moscow
References
- БРОНШТЕЙН И.Н., СЕМЕНДЯЕВ К.А. Справочник по ма-тематике для инженеров и учащихся втузов: учебное по-собие. – СПб.: Лань, 2022. — 608 с.
- ГНЕДЕНКО Б.В., БЕЛЯЕВ Ю.К., СОЛОВЬЁВ А.Д. Мате-матические методы в теории надежности: Основные ха-рактеристики надежности и их статистический анализ. –М.: URSS. 2017. – 584 с.
- ГНЕДЕНКО Б.В., КОВАЛЕНКО И.Н. Введение в теориюмассового обслуживания. – М.: URSS, 2021. – 400 с.
- ЗВЕРКИНА Г.А. Об экспоненциальной скорости сходимо-сти распределения одной нерегенерирующей системы на-дёжности // Фундаментальная и прикладная математика. –2020. – Т. 23, Вып. 1. – С. 145–160.
- ЗВЕРКИНА Г.А., КОШЕЛЕВ А.А. Об имитационном моде-лировании случайных величин с помощью интенсивности //Управление большими системами: сборник трудов. – 2021. –Вып. 94. – С. 33–49.
- ЗВЕРКИНА Г.А., КОШЕЛЕВ А.А. О поиске оптимальногошага при имитационном моделировании случайной величи-ны с помощью интенсивности // Управление большими си-стемами: сборник трудов. – 2022. – Вып. 100. – С. 261–274.
- ЗВЕРКИНА Г.А., КОШЕЛЕВ А.А. Численное моделирова-ние случайных величин с использованием их интенсивно-стей // Труды 19-ой Всероссийской школы-конференциимолодых ученых «Управление большими системами»(УБС’2023, Воронеж). – Воронеж: ФГБОУ ВО «Воронеж-ский государственный технический университет», 2023. –С. 509–516.
- КЛИМОВ Г.П. Теория вероятностей и математическаястатистика. – М.: Изд-во Московского университета. –2011. – 368 с.
- ЛАГУТИН М.Б. Наглядная математическая статисти-ка: учебное пособие. – М.: БИНОМ. Лаборатория знаний,2019. – 472 с.
- COX D.R. Renewal Theory. – Methuen & Co., 1967.
- DEVROYE L. Non-Uniform Random Variate Generation. –Springer Science+Business Media, LLC, 1986.
- HORMANN W., LEYDOLD J., DERFLINGER G. AutomaticNonuniform Random Variate Generation. – Springer, 2004.
- KALIMULINA E., ZVERKINA G. On generalized intensityfunction and its application to the backward renewal timeestimation for renewal processes // Proc. of the 5th Int. Conf.on Stochastic Methods (ICSM-5, 2020), 2020, Moscow, Russia,RUDN, Moscow. – P. 306–310.
- SHELDON M.R. Introduction to Probability Models. –Academic Press; June 30, 2023. United Kingdom, Elsevier Inc.,2024. – 870 p.
- SMITH W.L. Renewal theory and its ramifications // J. Roy.Statist. Soc. Ser. B. – 1958. – Vol. 20:2. – P. 243–302.
- VERETENNIKOV A.YU. On convergence rate for Erlang-Sevastyanov type models with infinitely many servers. Inmemory and to the 90th anniversary of A.D. Solovyev(06.09.1927–06.04.2001) // Theory Stoch. Process. – 2017. –Vol. 22(38):1. – P. 89–103.
- VERETENNIKOV A. On recurrence and availability factorfor single-server system with general arrivals // Theory andApplications (RT&A). – 2016. – Vol. 11, No. 3(42). –P. 49–58.
- VERETENNIKOV A. On polynomial recurrence for reliabilitysystem with a warm reserve // Markov Processes and RelatedFields. – 2019. – Vol. 25. – P. 745–761.
- VERETENNIKOV A. On the rate of convergence for infiniteserver Erlang-Sevastyanov’s problem // Queueing Systems. –2014. – Vol. 76(2). – P. 181–203.
- VERETENNIKOV A. On the rate of convergence to thestationary distribution in the single-server queuing system //Autom. Remote Control. – 2013. – Vol. 74(10). – P. 1620–1629.
- VERETENNIKOV A.YU., ZVERKINA G.A. Simple Proof ofDynkin’s Formula for Single-Server Systems and PolynomialConvergence Rates // Markov Processes Relat. Fields . – 2014. –Vol. 20. – P. 479–504.
- VERETENNIKOV A.YU., ZVERKINA G.A. On PolynomialBounds of Convergence for the Availability Factor // DistributedComputer and Communication Networks (Communications inComputer and Information Science). – 2016. – Vol. 601. –P. 358–369.
- ZVERKINA G.A. A System with Warm Standby // ComputerNetworks. CN 2019. Communications in Computer andInformation Science. – 2019. – Vol. 1039. – P. 387–399.
Supplementary files


