Well interaction modeling to analyze flooding systems efficiency on small data samples

Cover Page

Cite item

Full Text

Abstract

At the final stage of oil field development, an urgent problem is to maintain acceptable levels of oil production through operational flooding management. The complexity is compounded by the increasing number of wells operating in the field and the variability of the process of their interaction. This requires new approaches that consider these trends in oil production. A popular approach for analyzing the effectiveness of oilfield flooding systems in recent years has been the use of proxy models of the CRM family (capacitance-resistive models), which are mathematical models of material balance. At the same time, the inverse problem is solved to determine the model parameters. However, the small size of the data samples and the large number of functioning wells in the flooding system limits the effective practical application of this approach. The purpose of the article is to increase the efficiency of monitoring water flooding systems by reducing the size of the training data sample and expanding the scale of the analyzed systems from several tens to hundreds of wells. Two algorithms focused on large dimensions and small data samples are proposed. They were tested on model data in which there were 60 injection and 160 production wells, and 17 observations and random errors were present. The injectivity of injection wells is actual data from a real water flooding system. The flow rates of production wells are model values, taking into account random errors present in practice. These algorithms have demonstrated acceptable characteristics both in terms of accuracy and speed, and if possible, their application for forecasting.

About the authors

Alexander Nikolaevich Tyrsin

Science and Engineering Center “Reliability and Resource of Large Systems and Machines”, Ural Branch of RAS; Ural Federal University

Email: at2001@yandex.ru
Yekaterinburg

Stanislav Evgen'evich Kashcheev

South-Ural State University

Email: kashcheevs@susu.ru
Chelyabinsk

References

  1. АЗИЗ Х., СЕТТАРИ Э. Математическое моделирование пластовых систем: пер. с англ. – М.: Недра, 1982. – 408 с.
  2. АФАНАСКИН И.В., КРЫГАНОВ П.В., ГЛУШАКОВ А.А., и др. Использование CRM-моделей интерференции скважин для оценки фильтрационно-емкостных свойств пласта по данным разработки // Успехи кибернетики. – 2020. – №1(1). – С. 17–27.
  3. Библиотека алгоритмов NLopt для нелинейной оптими-зации. – URL: https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms.
  4. ДАНЬКО М.Ю., БРИЛЛИАНТ Л.С., ЗАВЬЯЛОВ А.С. Применение метода динамического материального ба-ланса и CRM-метода к подсчету запасов ачимовских и баженовских коллекторов // Недропользование XXI век. – 2019. – №4(80). – С. 76–85.
  5. НОВИКОВ Д.А. Сетевые структуры и организационные системы. – М.: ИПУ РАН, 2003. – 102 c.
  6. ПОСПЕЛОВА Т.А., СТЕПАНОВ С.В., СТРЕКАЛОВ А.В. и др. Математическое моделирование для принятия решений по разработке месторождений. – М.: Недра, 2021. – 427 с.
  7. СТЕПАНОВ С.В., БЕКМАН А.Д., РУЧКИН А.А. и др. Сопровождение разработки нефтяных месторождений с использованием моделей CRM. – Тюмень: ИПЦ «Экс-пресс», 2021. – 300 с.
  8. СТЕПАНОВ С.В., ТЫРСИН А.Н., РУЧКИН А.А. и др. Использование энтропийного моделирования для анали-за эффективности системы заводнения // Нефтяное хо-зяйство. – 2020. – №6. – С. 62–67.
  9. ТЫРСИН А.Н. Энтропийное моделирование сетевых структур // Автоматика и телемеханика. – 2022. – № 10. – С. 144–155. doi: 10.31857/S0005231022100130
  10. ТЫРСИН А.Н., СТЕПАНОВ С.В., РУЧКИН А.А. и др. Повышение достоверности моделирования взаимовлия-ния скважин для анализа эффективности системы за-воднения // Математическое моделирование. – 2023. – Т. 35, №6. – С. 63–80.
  11. ХАТМУЛЛИН И.Ф., ЦАНДА А.П., АНДРИАНОВА А.М. и др. Полуаналитические модели расчета интерферен-ции скважин на базе класса моделей CRM // Нефтяное хозяйство. – 2018. – №12. – С. 38–41.
  12. ЮШКОВ И.Р., ХИЖНЯК Г.П., ИЛЮШИН П.Ю. Разра-ботка и эксплуатация нефтяных и газовых месторож-дений. – Пермь: ПНИПУ, 2013. – 177 с.
  13. HOLANDA R.W., GILDIN E., JENSEN J.L. et al. A State-of-the-Art Literature Review on Capacitance Resistance Models for Reservoir Characterization and Performance Forecast-ing // Energies. – 2018. – Vol. 11. – 3368. – 45 p.
  14. JOHNSON S.G. The NLopt nonlinear-optimization package. – URL: http://github.com/stevengj/nlopt.
  15. KIM J.S., LAKE L., EDGAR T.F. Integrated Capacitance-Resistance Model for Characterizing Waterflooded Reser-voirs // Proc. of the 2012 IFAC Workshop on Automatic Control in Offshore Oil and Gas Production, Norwegian University of Science and Technology, Trondheim, Norway, May 31 – June 1. – 2012. – P. 19–24.
  16. LINDENLAUB I., PRUMMER A. Network Structure and Performance Get access Arrow // The Economic Journal. – 2021. – Vol. 131, No. 634. – P. 851–898.
  17. PULLAN W. Structure. – Cambridge: Cambridge University Press, 2000.
  18. RUNARSSON T.P., XIN YAO. Search Biases in Con-strained Evolutionary Optimization // IEEE Trans. on Sys-tems Man and Cybernetics – Part C: Applications and Re-views. 2005. – Vol. 35, No. 2. – P. 233–243.
  19. SVANBERG K. The Method of Moving Asymptotes – A New Method for Structural Optimization // Int. Journal for Nu-merical Methods in Engineering. – 1987. Vol. 24. – No. 2. – P. 359–373.
  20. TUO CHEN, JIANCHUAN XIANYU. Application of sto-chastic ranking based evolutionary strategy in environmen-tal management of microgrids // Journal of Physics: Confer-ence Series. 2023. – Vol. 2477. – 012076.
  21. YOUSEF A.A., GENTIL P.H., JENSEN J.L. et al. A Capaci-tance Model to Infer Interwell Connectivity from Production and Injection Rate Fluctuations // SPE Annual Technical Conference and Exhibition, 9–12 October 2005, Dallas, Texas.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).