Modeling of the temperature regime of the strip and roll in the stands of the hot rolling mill with interval parameters

Cover Page

Cite item

Full Text

Abstract

In the development of the theory of expert assessments, the exceptional role of the position and the median of ranking, known as the Kemeny median, has been revealed. However, there is no optimal solution method for finding the median of the rankings represented by the matrices of binary relations according to the distance matrix criterion. The validity of the optimal solution to the problem of choosing the median in the space of the rank scale of measurement is due to the fact that there is a one-to-one correspondence between the rankings represented by binary relation matrices on a set of pairs of objects and the rankings in the rank scale. It is also an important task to check the consistency of the opinions of the expert group. The existing statistical methods and methods of rank correlation do not measure the consistency of expert opinions, if by which we mean the measure of proximity between expert assessments of objects.. The article shows by concrete examples that the Kendal concordance coefficient, which is still found in the works of some authors, does not allow for a realistic assessment of the consistency of expert rankings, which can lead to erroneous management decisions. A method is proposed for evaluating the opinions of both a pair of experts and a group of experts, in the form of an average agreement of experts with respect to the median of rankings presented in the ranking scale.

About the authors

Monika Radzheshevna Dabas

Lipetsk State Technical University

Email: monique.dabas@gmail.com
Lipetsk

Pavel Viktorovich Saraev

Lipetsk State Technical University

Email: psaraev@yandex.ru
Lipetsk

References

  1. АНДРОСОВ А.С., ШАРЫЙ С.П. IntvalPy - библиотека ин-тервальных вычислений на языке Python // Вестник НГУСерия: Информационные технологии. – 2022. – Т. 20, №4. –С. 5–23.
  2. БОЛОТНОВ А.М., ХИСАМЕТДИНОВ Ф.З. Численные ис-следования катодной защиты трубопроводов с учетом ин-тервальной неопределенности в исходных данных // Вест-ник Уфимского государственного авиационного техниче-ского университета. – 2018. – Т. 22, №3(81). – С. 105–113.
  3. ВЕРЖБИЦКИЙ В.М. Численные методы. Математиче-ский анализ и обыкновенные дифференциальные уравне-ния. – М.: Изд-во «Высшая школа», 2001. – 382 c.
  4. ДАБАС М.Р., ЗУБКОВА Н.С., КОБЗЕВ А.А. Адаптация ма-тематической модели теплового режима полосы в чисто-вой группе клетей стана горячей прокатки // XVII Всерос-сийская школа-конференция молодых ученых «Управлениебольшими системами». – 2021. – С. 515–521.
  5. ДАБАС М.Р. Математическое моделирование тепловогорежима полосы на межклетевом промежутке при горячейпрокатке // Сборник материалов Шестнадцатой Всероссий-ской научно-практической конференции студентов и аспи-рантов. – 2019. – С. 258–260.
  6. ЛЕВИН В.И. Сравнение интервалов и оптимизационныезадачи с интервальными параметрами // Радиоэлектрони-ка, информатика, управление. – 2002. – №1(7). – С. 57–62.
  7. ЛЕВИН В.И. Интервально-дифференциальные уравнения иметод их решения // Вестник российских университетов.Математика. – 2015. – Т. 20, № 2. – С. 302–306.
  8. ПИМЕНОВ В.А., ПОГОДАЕВ А.К., КОВАЛЕВ Д.А. Влия-ние тепловых режимов горячей прокатки на образованиедефектов поверхности холоднокатаного листа // Произ-водство проката. – 2018. – № 12. – С. 8–14.
  9. САМАРСКИЙ А.А., ГУЛИН А.В. Численные методы. – М.:Наука, 1989. – 432 c.
  10. ТИХОНОВ А.Н., САМАРСКИЙ А.А. Уравнения матема-тической физики. – М.: Главиздат, 1953. – 660 c.
  11. ШАРЫЙ С.П. Конечномерный интервальный анализ. – Но-восибирск: XYZ, 2021. – 650 c.
  12. CASTRO J.A. DE, MOREIRA L.P. Modelling the hot rollingprocess using a finite volume approach // WIT Transactions onEngineering Sciences. – 2008. – No. 59. – P. 419–428.
  13. DABAS M., SARAEV P. Modeling of Temperature Strip withInterval Parameters in Interstand Gap in Hot Rolling // 3rd Int.Conf. on Control Systems, Mathematical Modeling, Automationand Energy Efficiency (SUMMA) – 2021. – No. 3. – P. 1–4.
  14. EDBERG J., MANTYLA P. Requirements of material modelingfor hot rolling // Simulation of Materials Processing: Theory,Methods and Applications / Ed.: Shen S. Dawson. – 1995. –P. 253–258.
  15. GASILOV N.A, AMRAHOV S. On differential equations withinterval coefficients // Mathematical Methods in the AppliedSciences. – 2019. – No. 43.
  16. GASILOV N.A Solving a system of linear differential equationswith interval coefficients // Discrete and Continuous DynamicalSystems – B. – 2021. – No. 5(26). – P. 2739–2747.
  17. HWANG, J.-K. Thermal Behavior of a Rod during Hot ShapeRolling and Its Comparison with a Plate during Flat Rolling //Processes. – 2000. – No. 8 327. – 14 p.
  18. MUOJEKWU C.A. Modeling of thermomechanical andmetallurgical phenomena in steel strip during hot directrolling and runout table cooling of thin-cast slabs. Columbia:Department of metals and Materials engineering, the Universityof British Columbia, 1998.
  19. ORESHINA M., DABAS M. Modeling of Thermal Mode inSteel Rolling // 2st Int. Conf. on Control Systems, MathematicalModelling, Automation and Energy Efficiency (SUMMA). –2020. – No. 2. – P. 1–4.
  20. PEREZ-ALVARADO A., CASTANEDA R.S., CHATTO-PADHYAY K., MORALES R. Numerical Simulation of the HotRolling Process of Steel Beams // Materials. – 2021. – No. 14,7038. – 18 p.
  21. ROSIAK A., SANTOS T.G. DOS, ALBA D.R., BRITO A.M.G.et al. Thermal Behavior of a Rod during Hot Shape Rolling andIts Comparison with a Plate during Flat Rolling // AmericanScientific Research Journal for Engineering, Technology, andSciences (ASRJETS). – 2020. – Vol. 71, No. 1. – P. 182–194.
  22. VISCOROVA, R., SCHOLZ R., SPITZER K.-H.,WENDELSTORF J. Spray water cooling heat transfer underoxide scale formation conditions // Advanced ComputationalMethods in Heat Transfer IX. – 2006. – P. 163–172.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).