Том 24, № 2 (2024)

Обложка

Весь выпуск

Радиофизика, электроника, акустика

Моделирование и расчет течений дисперсных сред в канале с внезапным расширением при наличии нуклеации, коагуляции и фазовых переходов

Аманбаев Т.Р., Изтаев Ж.Д., Тилеуов Г.Е., Абдусалиев Н.А.

Аннотация

С помощью квазиравновесной модели, основанной на уравнениях механики многофазных сред, изучено течение дисперсной смеси в канале с внезапным расширением при наличии процессов нуклеации (зародышеобразования), коагуляции зародышей (кластеров) и фазовых переходов (испарения, конденсации) в двумерной постановке. Для описания процесса зародышеобразования используется модель гомогенной нуклеации. Считается, что процесс коагуляции кластеров происходит за счет их броуновского движения, при этом для коэффициента коагуляции берется выражение, соответствующее монодисперсным сферическим частицам. Для определения скорости фазовых переходов используется формула Герца – Кнудсена – Ленгмюра. Считалось, что в узкой части канала при определенных условиях беспрерывно появляются зародыши дисперсной фазы, которые попадают с потоком в расширенную часть канала. В качестве примера рассмотрено течение дисперсной смеси с зародышами воды в собственном паре. Расчеты проведены с помощью численного метода крупных частиц. Показано, что течение имеет вихревую структуру, причем в зоне вихря формируются наиболее крупные частицы (кластеры). Расчетами установлено, что процесс коагуляции достаточно сильно влияет на распределение размеров кластеров внутри канала. Обнаружено, что степень переохлаждения пара существенно влияет на приведенную плотность дисперсной фазы (в частности, увеличение этого параметра на 50% приводит к росту приведенной плотности дисперсной фазы в среднем примерно на три порядка). Установлено, что картина течения, полученная с помощью численных расчетов, согласуется с экспериментом.
Известия Саратовского университета. Новая серия. Серия: Физика. 2024;24(2):102-113
pages 102-113 views

Твердотельная электроника, микро- и наноэлектроника

Влияние функциональных групп на электронно-энергетические характеристики тонких пленок дырчатого графена: результаты DFTB-моделирования

Барков П.В., Слепченков М.М., Глухова О.Е.

Аннотация

Перспективными материалами для изготовления биосенсоров с высокой чувствительностью и низким пределом обнаружения является графен и его производные благодаря их большой удельной площади поверхности, превосходной гибкости и прочности, а также высокой электропроводности. В рамках данной работы рассматривается дырчатый графен, успешно синтезируемый и уже нашедший свое применение в нано- и биоэлектронике. Из экспериментальных данных известно, что свободные края отверстий в структуре дырчатого графена содержат функциональные группы, влияние которых следует учитывать при разработке сенсорных устройств на его основе. Цель данной работы заключалась в установлении закономерностей влияния функционализации карбонильными и карбоксильными группами на электронно-энергетические параметры дырчатого графена. Объектом исследования в данной работе являлась пленка дырчатого графена с почти круглыми отверстиями диаметром 1.2 нм. Все расчеты в рамках данного исследования выполнялись с помощью квантового метода функционала плотности в приближении сильной связи с самосогласованным вычислением заряда в программном пакете DFTB+ при температуре 300 К. Моделирование процесса функционализации дырчатого графена осуществлялось с применением оригинального алгоритма пошаговой посадки функциональных групп на атомы по краям отверстия. По результатам проведенных расчетов были установлены закономерности перераспределения электронной плотности заряда между функциональными группами и дырчатым графеном и особенности изменения уровня Ферми графенового объекта в ходе функционализации. Выявленные закономерности важны при разработке чувствительных элементов сенсорных устройств, изготавливаемых на основе дырчатого графена. 
Известия Саратовского университета. Новая серия. Серия: Физика. 2024;24(2):114-125
pages 114-125 views

Оптика и спектроскопия. Лазерная физика

Спектральные проявления межмолекулярного взаимодействия гиалуроновой кислоты с азотсодержащими аминокислотами

Пластун И.Л., Брыксин К.А., Майорова О.А., Бабков Л.М.

Аннотация

Методами экспериментальной и теоретической ИК спектроскопии исследованы проявления межмолекулярного взаимодействия, основанного на водородном связывании, в ИК спектрах гиалуроновой кислоты и в мультикомпонентных смесях гиалуроновой кислоты с азотсодержащими аминокислотами, входящими в состав муцина слизистой оболочки мочевого пузыря и белковых микрогелей-носителей. Проведено сравнение измеренного и рассчитанных в гармоническом приближении ИК спектров гиалуроновой кислоты. На основе расчёта структуры молекулярных комплексов и соответствующих им ИК спектров с последующим анализом параметров образующихся водородных связей были даны оценки силы комплексообразования гиалуроновой кислоты с аминокислотами, входящими в состав белковых микрогелей, использующихся в таргетной терапии, и в состав белков клеток-мишеней.
Известия Саратовского университета. Новая серия. Серия: Физика. 2024;24(2):126-137
pages 126-137 views

Биофизика и медицинская физика

Пачечная динамика спайковой нейронной сети, вызванная активностью внеклеточного матрикса мозга

Стасенко С.В.

Аннотация

Цель настоящей работы – исследовать влияние внеклеточного матрикса мозга на формирование пачечной динамики спайковой нейронной сети. В качестве модели нейрона использована модель нейрона Ижикевича, для описания динамики внеклеточного матрикса мозга была использована феноменологическая модель Казанцева, построенная с использованием формализма модели Ходжкина – Хаксли. Разработана и исследована модель формирования пачечной динамики спайковой нейронной сети под воздействием внеклеточного матрикса мозга. Получены основные динамические режимы нейронной активности в отсутствии регуляций и в присутствии внеклеточного матрикса мозга. Проведено исследование влияния модуляции внеклеточным матриксом мозга на частоту пачечной активности нейронной сети. В результате исследования установлено, что регуляция активности нейронов, опосредованная внеклеточным матриксом мозга, способствует группировке спайков в квазисинхронные популяционные разряды, называемые популяционными пачками. При этом увеличение силы влияния внеклеточного матрикса мозга на постсинаптические токи через синаптическое масштабирование приводит к увеличению степени синхронности популяций нейронов.
Известия Саратовского университета. Новая серия. Серия: Физика. 2024;24(2):138-149
pages 138-149 views

Оптимизация методов выделения и идентификации пептидов, выделенных из личинок Hermetia illucens

Ларионова О.С., Древко Я.Б., Тычинин Н.Д., Крылова Л.С., Древко Б.И., Ларионов С.В.

Аннотация

Данная статья посвящена выделению и идентификации водорастворимых пептидов, выделенных из биомассы личинок черной львинки Hermetia illucens. Цель этого исследования заключалась в оптимизации метода выделения и контроля белковых фракций для их препаративного получения. Установлено, что при помощи эксклюзионной хроматографии с использованием сит с размером пор 3.5 и 7 кДа получены белковые фракции с соответствующим интервалом молекулярных масс. При разделении анализируемых фракций методом высокоэффективной жидкостной хроматографии получена смесь трех пептидов с отличием в хроматографическом времени удерживания менее 1 минуты, что было подтверждено тремя параллельными экспериментами по выделению и очистке пептидов. Поскольку белковые фракции 1 и 2 имели сходные значения, а первая и третья – меньшую разницу во времени удерживания, полного разделения данных хроматографических пиков не происходило. Поэтому в дальнейшем из-за сходных физико-химических свойств нами было решено не разделять данные три белковые фракции с различными временами удерживания, а проводить исследования со смесью пептидов. Методом динамического рассеяния света установлено, что размер белков составил от 68 до 141 нм в белковой фракции 1, от 37 до 79 нм в белковой фракции 2 и от 43 до 122 нм в белковой фракции 3. Таким образом, авторами был разработан алгоритм выделения водорастворимых пептидов из личинок насекомых, основанный на разделении белков с использованием диализных мембран и дальнейшим подтверждением их состава и очистки методом высокоэффективной жидкостной хроматографии с ультрафиолетовым детектором и методом динамического рассеяния света.
Известия Саратовского университета. Новая серия. Серия: Физика. 2024;24(2):150-160
pages 150-160 views

Кинетика индуцированной глицерином молекулярной диффузии в нормальных и раковых тканях яичников

Селифонов А.А., Захаревич А.М., Рыхлов А.С., Тучин В.В.

Аннотация

Предыстория и цели. Существует глобальная тенденция к увеличению числа пациентов с диагнозом рак яичников в течение их репродуктивного возраста. Одной из нынешних клинических технологий является технология криоконсервации удаленных здоровых яичников, чтобы сохранить фертильность и их последующую трансплантацию после лечения рака других органов. Глицерин часто используется в качестве непроникающего агента при замораживании органов для улучшения выживаемости фолликулов. Материалы и методы. В работе изучались яичники кошек с диагнозами, подтвержденными гистологическими исследованиями: фолликулярная фаза, лютеиновая фаза, серозная карцинома, леймиосаркома. Диффузная спектроскопия отражения использовалась для определения кинетических параметров дегидратации и оптических свойств тканей при взаимодействии с глицерином. По изменению массы в течение длительного времени определяли коэффициент диффузии глицерина в образцах. Полученные результаты. Был измерен эффективный коэффициент диффузии интерстициальной воды для яичников кошек: D = (2.6 ± 0.4)·10−6 см2/с (фолликулярная фаза), D = (3.3 ± 0.4)·10−6 см2/с (лютеиновая фаза), D = (3.0 ± 0.3)·10−6 см2/с (лейомиосаркома), D = (1.6 ± 0.2)·10−6 см2/с (серозная карцинома), который инициируется через 1.5–2 часа после взаимодействия образцов с глицерином. Диффузия глицерина происходит в течение длительного периода времени, около 400 часов, и для исследуемых образцов составляет: D = (8.3 ± 2.5)·10−8 см2/с (фолликулярная фаза), D = (5.6 ± 1.7)·10−8 см2/с (лютеиновая фаза), D = (2.2 ± 0.2)·10−​8 см2/с (леймиосаркома) и D = (1.1 ± 0.4)·10−7 см2/с (серозная карцинома). Выводы. Установленные перфузионно-кинетические свойства глицерина/интерстициальной воды для изучаемых образцов могут использоваться в клинической практике при приготовлении ткани яичников для трансплантации (криоконсервации), при трансмембранном переносе лекарств, развитии новых репродуктивных технологий и т. д.

Известия Саратовского университета. Новая серия. Серия: Физика. 2024;24(2):161-170
pages 161-170 views

Нанотехнологии, наноматериалы и метаматериалы

Модуляция лазерного излучения суспензией углеродных нанотрубок в магнитной жидкости

Постельга А.Э., Игонин С.В., Бочкова Т.С., Нагорнов Г.М., Скрипаль А.В.

Аннотация

Магнитные жидкости – это уникальные нанодисперсные системы, обладающие свойствами магнитного материала и жидкости. Несмотря на то, что их магнитные свойства уступают сталям и ферритам, они являются супермагнитными по сравнению с большинством жидких сред. При приложении магнитного поля к магнитной жидкости в ней образуются агломераты ферромагнитных наночастиц, которые визуально наблюдались в данной работе. Исследована зависимость глубины модуляции лазерного излучения с длинами волн 450, 550 и 650 нм от концентрации нанотрубок и величины индукции магнитного поля. Проведено измерение коэффициента пропускания поляризованного излучения оптического диапазона в зависимости от взаимного расположения агломератов ферромагнитных наночастиц и вектора напряженности электрического поля лазерного излучения. Изменение угла между электрической компонентой лазерного излучения и вектором индукции магнитного поля осуществлялось поворотом лазерного диода с поляризатором серводвигателем относительно вертикальной оси. Выявлено, что с увеличением длины волны лазерного излучения глубина модуляции возрастает. При увеличении значения индукции магнитного поля увеличивается глубина модуляции лазерного поляризованного излучения для всех длин волн. Добавление в магнитную жидкость углеродных нанотрубок приводит к их выстраиванию вдоль агломератов. Максимальное значение глубины модуляции для магнитной жидкости без углеродных нанотрубок составило 15% и наблюдалось для лазерного излучения с длиной волны 650 нм. Добавление в магнитную жидкость многостенных углеродных нанотрубок позволило увеличить значение глубины модуляции примерно в полтора раза.
Известия Саратовского университета. Новая серия. Серия: Физика. 2024;24(2):171-179
pages 171-179 views

Из истории физики

Профессор Саратовского и Московского университетов Сергей Анатольевич Богуславский (1883–1923)

Аникин В.М.

Аннотация

В статье систематизированы биографические сведения о С. А. Богуславском, выдающемся российском физике-теоретике первой четверти XX столетия, одном из первых профессоров физико-математического факультета Саратовского университета (1918–1921). В 1911–1922 гг. им были выполнены важные теоретические работы в области кристаллофизики, в том числе пироэлектричества, молекулярной физики, термодинамики, гидродинамики, вакуумной электроники. Жизнь С. А. Богуславского осложняла серьезная болезнь. Основными источниками для статьи послужили научные труды С. А. Богуславского, воспоминания его современников – сотрудников Гёттингенского, Московского и Саратовского университетов, данные из архива Саратовского государственного университета. Отмечается значимость работ С. А. Богуславского для физики своего времени и сохраняющийся к ним интерес в контексте истории развития физики, методологии представления фундаментальных и практических результатов научного творчества, организации высшего образования в сложных общественных и личных обстоятельствах, сохранения исторической памяти. Статья является наиболее полным жизнеописанием С. А. Богуславского.
Известия Саратовского университета. Новая серия. Серия: Физика. 2024;24(2):180-193
pages 180-193 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».