Evaluation of the wettability of the filler binder during the manufacture of prepreg with ultrasound exposure for three-dimensional printing filaments reinforced with continuous carbon fiber

Capa

Citar

Texto integral

Resumo

Background and Objectives: The aim of the research is to study the effect of ultrasound on the wettability of carbon fibers with a thermosetting binder and to determine the work of adhesion in the binder-fiber contact as part of the filament prepreg for additive technologies. Materials and Methods: Carbon fibers and carbon fiber roving with a width of 2 mm GG-200P were used in the research. Impregnation was carried out with ED-20 epoxy resin with a PEP hardener by pulling a harness at a speed of 10 mm/s through a gap of 2-3 mm between the end of the ultrasonic concentrator and the lower surface of the container with a binder. In total, 5 control and 5 experimental samples with a length of 300 mm were impregnated. Ultrasonic processing of samples was carried out on an experimental ultrasonic installation with an experimental ultrasonic generator controlled from a laptop and providing a discreteness of 10 Hz adjustment. The impregnation was carried out at a resonant frequency of 21650 Hz and an oscillation amplitude of the output end of the concentrator – 15 microns. The diameter of the output part of the concentrator was 14 mm, respectively, the length of the fiber bundle section was the same size at each time. After curing of the binder, the surface of the fibers was studied using a digital microscope Bresser LCD 50x–2000x at magnification x40 and x300. When impregnating control samples, the ultrasonic transducer of the installation was not included. Microphotographs were used to evaluate the wettability of the fibers with a binder under the influence of ultrasound and without ultrasound, and also to determine the edge angle of wetting and then – according to the Young – Dupree equation – the adhesion of the binder to the fiber surface. Results: The control bundle of carbon fibers is characterized by incomplete consolidation of fibers into a bundle, there are separate disoriented fibers, as well as separately existing conglomerates of fibers. Experimental bundles impregnated under the influence of ultrasound are monolithic structures with a continuous filling with a binder. At the same time, areas with inflows of the cured binder that violate the geometric shape of the prepreg are noted. Both control and experimental samples of harness are generally fully impregnated consolidated prepregs, there are no individual fibers or groups of fibers, which may be due to the initially regular structure of harness compared to randomly organized individual fibers into a thread. At the same time, in the control samples, the binder is unevenly distributed over the surface, individual inflows are noted, which indicates an insufficiently uniform impregnation of the harness. which is not observed on the prototypes. By calculating the adhesion performance for control and experimental samples using the experimentally obtained values of the wetting angle, it was found that its value is 44.71–48.98 mJ/m2 and 64.46–66.4 mJ/m2 , respectively, for control and experimental samples. Conclusion: A significant improvement in the wettability of the fibers with a binder has been found, manifested in a decrease in the wetting edge angle from 70–77° to 35–40°. Using the Young – Dupree equation, the adhesion of the binder to the fiber has been calculated and it has been shown that the effect of ultrasound during the impregnation of fibers increases the adhesion by an average of 39.7%

Sobre autores

Irina Zlobina

Yuri Gagarin State Technical University of Saratov

ORCID ID: 0000-0002-2331-7444
77, Politechnicheskaya str., Saratov, 410054, Russia

Nikolaj Bekrenev

Yuri Gagarin State Technical University of Saratov

ORCID ID: 0000-0002-7457-1020
Scopus Author ID: 6506930142
77, Politechnicheskaya str., Saratov, 410054, Russia

Danila Churikov

Yuri Gagarin State Technical University of Saratov

ORCID ID: 0009-0002-7389-9419
Researcher ID: HNB-5738-2023
77, Politechnicheskaya str., Saratov, 410054, Russia

Bibliografia

  1. Гибсон Я., Розен Д., Стакер Б. Технологии аддитивного производства. Трехмерная печать, быстрое прототипирование и прямое цифровое производство. М. : ТЕХНОСФЕРА, 2016. 656 с.
  2. Bikas H., Stavropoulos P., Chryssolouris G. Additive Manufacturing methods and modeling approaches: A critical review // International Journal of Advanced Manufacturing Technology. 2016. Vol. 83. P. 389–405. https://doi.org/10.1007/s00170-015-7576-2
  3. Михайлин Ю. А. Специальные полимерные композиционные материалы. СПб. : Научные основы и технологии, 2008. 660 с.
  4. Михайлин Ю. А. Конструкционные полимерные композиционные материалы. 2-е изд. СПб. : Научные основы и технологии, 2010. 822 с.
  5. Балашов А. В., Маркова М. И. Исследование структуры и свойств изделий, полученных 3D-печатью // Инженерный вестник Дона. 2019. № 1 (52). С. 66.
  6. Петров В. М., Безпальчук С. Н., Яковлев С. П. О влиянии структуры на прочность изделий из пластиков, получаемых методом 3D-печати // Вестник государственного университета морского и речного флота имени адмирала С. О. Макарова. 2017. Т. 9, № 4. С. 765–776. https://doi.org/10.21821/2309-5180-2017-9-4-765-776
  7. Matsuzaki R., Ueda M., Namiki M., Jeong T. K., Asahara H., Horiguchi K., Nakamura T., Todoroki A., Hirano Y. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation // Sci. Rep. 2016. Article number 23058. https://doi.org/10.1038/srep23058
  8. Ning F., Cong W., Qiu J., Wei J., Wang S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling // Composites Part B-engineering. 2015. Vol. 80. P. 369–378. https://doi.org/10.1016/j.compositesb.2015.06.013
  9. Invernizzi M., Natale G., Levi M., Turri S., Griffini G. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites // Materials. 2016. Vol. 9, iss. 7. P. 583. https://doi.org/10.3390/ma9070583
  10. Polyzos E., Katalagarianakis A., Van Hemelrijck D., Pyl L., Polyzos D. A. Multi Scale Analytical Methodology for the Prediction of Mechanical Properties of 3D-printed Materials with continouos Fibres // Additive Manufacturing. 2020. Vol. 36. Article number 101394. https://doi.org/10.1016/j.addma.2020.101394
  11. Wang F., Wang G., Zhang Z., Ning F. Fiber-matrix Impregnation Behavior During Additive Manufacturing of continouos Carbon Fiber reinforced Polylactic Acid Composites // Additive Manufacturing. 2021. Vol. 37. Article number 101661. https://doi.org/10.1016/j.addma.2020.101661
  12. Кулезнев В. С., Шершнев А. С. Химическая и физическая модификация полимеров. М. : Химия, 1990. 207 с.
  13. Студенцов В. Н. Физическая модификация армированных реактопластов // Вестник СГТУ. 2011. № 4, вып. 3. C. 209–218.
  14. Негров Д. А. Влияние энергии ультразвуковых колебаний на структуру и свойства полимерного композиционного материала на основе политетрафторэтилена: дис. … канд. техн. наук. Омск, 2009. 123 с.
  15. Хозин В. Г., Каримов А. А., Череватский А. М., Полянский А. А., Мурафа А. В. Модифицирование эпоксидных композиций ультразвуком // Механика композиционных материалов. 1984. № 4. С. 702–706.
  16. Хмелев В. Н., Башара В. А., Никитин А. А., Цыганок С. Н., Барсуков Р. В. Создание ультразвуковой установки для пропитки изделий из композиционных полимерных материалов // Композиты – в народное хозяйство России (Композит ’99) : сборник международной научно-технической конференции: тезисы докладов. Барнаул : AлтГТУ, 1999. С. 42–43.
  17. Хмелев В. Н., Барсуков Р. В., Цыганок С. Н., Сливин А. Н., Хмелев М. В. ; Государственное образовательное учреждение высшего профессионального образования «Алтайский государственный технический университет им. И. И. Ползунова». Устройство для ультразвуковой пропитки. Патент № 2224649 РФ, МПК В29В 15/10, С08J 7/18, В05С 3/12. Заявка 2003104729/15, 17.02.2003 ; опубликовано 27.02.2004, 10 с.
  18. Волков С. С., Бигус Г. А., Ремизов А. Л. Технология и оборудование для ультразвуковой сварки полимерных композиционных материалов // Пластические массы. 2018. № 5-6. С. 50–55. https://doi.org/10.35164/0554-2901-2018-5-6-50-55
  19. Хмелев В. Н., Хмелев С. С., Цыганок С. Н., Титов Г. А. Ультразвуковая пропитка полимерных композиционных материалов // Южно-Сибирский научный вестник. 2012. № 2. С. 193–196.
  20. Хмелев В. Н., Хмелев С. С., Карзакова К. А., Голых Р. Н. Повышение эффективности ультразвукового воздействия при производстве высоконаполненных композиционных материалов // Южно-Сибирский научный вестник. 2012. № 2. С. 189–192.
  21. Khmelev V. N., Khmelev S. S., Tsyganok S. N., Titov G. A. The Ultrasonic Impregnation of Polymer Composite Materials // Inernational Workshop and Tutorias on Electron Devices and Materials, EDM. Proceedings. 2012. P. 170–173.
  22. Lionetto F., Dell’Anna R., Montagna F., Maffezzoli A. Ultrasonic Assisted Consolidation of Commingled Thermoplastic/Glass Fiber Rovings // Front. Mater. 2015. Vol. 2. P. 32. https://doi.org/10.3389/fmats.2015.00032
  23. Smirnov S. V., Veretennikova I. A., Konovalov D. A., Michurov N. S., Osipova V. A., Pestov A. V. Effect of hardeners on the mechanical properties of epoxy coatings based on ED-2 resin // Diagnostics, Resource and Mechanics of Materials and Structures. 2023. Iss. 1. P. 6–16. https://doi.org/10.17804/2410-9908.2023.1.006-016
  24. Нуштаева А. В., Мельникова К. С., Просвирнина К. М., Нуштаева С. А. Измерение краевого угла методом сидячей капли на вертикальной поверхности // Фундаментальные исследования. 2015. № 2-13. С. 2855–2859.
  25. Богданова Ю. Г. Адгезия и ее роль в обеспечении прочности полимерных композитов : учебное пособие. М. : МГУ им. М. В. Ломоносова. 2010. 68 с.
  26. Берлин А. А. Полимерные композиционные материалы: структура, свойства, технология. СПб. : Профессия, 2009. 556 с.
  27. Богданова С. А., Слобожанинова М. В., Вашурин С. А., Дебердеев Р. Я., Барабанов В. П. Растекание эпоксидной смолы и полиэфира на поверхности субстратов с различной полярностью // Структура и динамика молекулярных систем. Яльчик-2002 : сборник статей. Йошкар-Ола : Изд-во МарГТУ, 2002. С. 60–63.
  28. Антипов Ю. В., Круглов Е. В., Пахомов К. С., Чалых А. Е. Влияние потока плазмы высокочастотного емкостного разряда пониженного давления на адгезионные и физико-механические характеристики арамидных и углеродных волокон // Пластические массы. 2021. № 9–10. С. 8–11. https://doi.org/10.35164/0554-2901-2021-9-10-8-11
  29. Физика и техника мощного ультразвука : в 3 кн. / АН СССР. Акустический ин-т ; под ред. [и с предисл. Л. Д. Розенберга]. М. : Наука, 1967–1970. Кн. 3 : Физические основы ультразвуковой технологии / [авт. В. Ф. Казанцев, А. М. Мицкевич, Б. А. Агранат и др.]. 1970. 689 с.
  30. Розина Е. Ю. Кавитационный режим звукокапиллярного эффекта // Акустичний вiсник. 2003. Т. 6, № 1. С. 48–59.

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies