Hydrogen bonding in saturated acids triglyceride monohydrates: MD and DFT modeling
- 作者: Berezin K.V.1, Stepanovich E.Y.2, Dvoretsky K.N.3, Antonova E.M.4, Likhter A.M.2, Yanina I.Y.1
-
隶属关系:
- Saratov State University
- Astrakhan Tatishchev State University
- Saratov State Medical University named after V. I. Razumovsky
- Astrakhan State Medical University
- 期: 卷 25, 编号 4 (2025)
- 页面: 425-437
- 栏目: Optics and Spectroscopy. Laser Physics
- URL: https://journals.rcsi.science/1817-3020/article/view/357326
- DOI: https://doi.org/10.18500/1817-3020-2025-25-4-425-437
- EDN: https://elibrary.ru/LXEQFE
- ID: 357326
如何引用文章
全文:
详细
作者简介
Kirill Berezin
Saratov State University
ORCID iD: 0000-0003-0940-0388
SPIN 代码: 1918-9749
410012, Russia, Saratov, Astrakhanskaya street, 83
Ekaterina Stepanovich
Astrakhan Tatishchev State University
ORCID iD: 0000-0002-6656-8278
20a Tatishchev St., Astrakhan 414056, Russia
Konstantin Dvoretsky
Saratov State Medical University named after V. I. Razumovsky
ORCID iD: 0000-0002-8551-4902
SPIN 代码: 2468-0157
Bolshaya Kazachia st., 112 Saratov, 410012 Russia
Ekaterina Antonova
Astrakhan State Medical University
ORCID iD: 0000-0003-3379-5092
SPIN 代码: 6002-7958
121 Bakinskaya St., Astrakhan 414000, Russia
Anatoly Likhter
Astrakhan Tatishchev State University
ORCID iD: 0000-0001-9193-7998
SPIN 代码: 1256-2230
20a Tatishchev St., Astrakhan 414056, Russia
Irina Yanina
Saratov State University
ORCID iD: 0000-0002-6814-556X
SPIN 代码: 4489-5783
410012, Russia, Saratov, Astrakhanskaya street, 83
参考
- McClements D. J. Food Emulsions: Principles, Practices, and Techniques. 3rd edition. Boca Raton, CRC Press, 2015. 714 p. https://doi.org/10.1201/b18868
- Ravotti R., Worlitschek J., Pulham C., Stamatiou A. Triglycerides as novel phase-change materials: A review and asessment of their thermal properties. Molecules, 2020, vol. 25, iss. 23, art. 5572. https://doi.org/10.3390/molecules25235572
- Tascini A. S., Noro M. G., Chen R., Seddon J. M., Bresme F. Understanding the interactions between sebum triglycerides and water: A molecular dynamics simulation study. Phys. Chem. Chem. Phys., 2018, vol. 20, iss. 3, pp. 1848–1860. https://doi.org/10.1039/C7CP06889A
- Chumpitaz L. D. A., Coutinho L. F., Meirelles A. J. A. Surface tension of fatty acids and triglycerides. J. Amer. Oil Chem. Soc., 1999, vol. 76, iss. 3, pp. 379–382. https://doi.org/10.1007/s11746-999-0245-6
- Javadi A., Dowlati S., Shourni S., Rusli S., Eckert K., Miller R., Kraume M. Enzymatic hydrolysis of triglycerides at the water–oil interface studied via interfacial rheology analysis of lipase adsorption layers. Langmuir, 2021, vol. 37, iss. 44, pp. 12919–12928. https://doi.org/10.1021/acs.langmuir.1c01963
- Caruso B., Wilke N., Perillo M. A. Triglyceride lenses at the air–water interface as a model system for studying the initial stage in the biogenesis of lipid droplets. Langmuir, 2021, vol. 37, iss. 37, pp. 10958–10970. https://doi.org/10.1021/acs.langmuir.1c01359
- Kinard T. C., Wrenn S. P. Triglycerides stabilize water/organic interfaces of changing area via conformational flexibility. Langmuir, 2024, vol. 40, iss. 5, pp. 2500–2509. https://doi.org/10.1021/acs.langmuir.3c02473
- Cao Y., Marra M., Anderson B. D. Predictive relationships for the effects of triglyceride ester concentration and water uptake on solubility and partitioning of small molecules into lipid vehicles. J. Pharm Sci., 2004, vol. 93, iss. 11, pp. 2768–2779. https://doi.org/10.1002/jps.20126
- Benedikt T., Briesen K. H. Water–triglyceride interfaces limit permeability and diffusion of aromamolecules in butter. Eur. J. Lipid Sci. Technol., 2024. vol. 126, iss. 12, art. 2300248. https://doi.org/10.1002/ejlt.202300248
- Groot C. C. M., Velikov K. P., Bakker H .J. Structure and dynamics of water molecules confined in triglyceride oils. Phys. Chem. Chem. Phys., 2016, vol. 18, iss. 42, pp. 29361–29368. https://doi.org/10.1039/C6CP05883C
- Papageorgiou D. G., Demetropoulos I. N., Lagaris I. E., Papadimitriou P. T. How many conformers of the 1,2,3-propanetriol triacetate are pin gas phase and in aqueous solution? Tetrahedron, 1996, vol. 52, iss. 2, pp. 677–686. https://doi.org/10.1016/0040-4020(95)00918-3
- Berezin K. V., Dvoretskii K. N., Chernavina M. L., Novoselova A. V., Nechaev V. V., Likhter A. M., Shagautdinova I. T., Smirnov V. V., Antonova E. M., Grechukhina O. N. The use of IR spectroscopy and density functional theory for estimating the relative concentration of triglycerides of oleic and linoleic acids in a mixture of olive and sunflower seed oils. Opt. Spectrosc., 2019, vol. 127, iss. 6, pp. 955–961. https://doi.org/10.1134/S0030400X1912004X
- Berezin K. V., Dvoretskii K. N., Chernavina M. L., Novoselova A. V., Nechaev V. V., Antonova E. M., Shagautdinova I. T., Likhter A. M. The Use of Raman spectroscopy and methods of quantum chemistry for assessing the relative concentration of triglycerides of oleic and linoleic acids in a mixture of olive oil and sunflower seed oil. Opt. Spectrosc., 2018, vol. 125, iss. 3, pp. 311–316. https://doi.org/10.1134/S0030400X18090059
- Berezin K. V., Antonova E. M., Shagautdinova I. T., Chernavina M. L., Dvoretskiy K. N., Grechukhina O. N., Vasilyeva L. M., Rybakov A. V., Likhter A. M. FTIR spectrum of grape seed oil and quantum models of fatty acids triglycerides. Proc. SPIE, 2018, vol. 10716, art. 1071625. https://doi.org/10.1117/12.2316488
- Van der Spoel D., Lindahl E., Hess B., Groenhof G., Mark E. A., Berendsen H .J. C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, vol. 26, iss. 16, pp. 1701–1718. https://doi.org/10.1002/jcc.20291
- Duan Y., Wu C., Chowdhury S., Lee M. C., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., Caldwell J., Wang J., Kollman P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comp. Chem., 2003, vol. 24, iss. 16, pp. 1999–2012. https://doi.org/10.1002/jcc.10349
- Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R., Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, vol. 81, iss. 8, pp. 3884–3690. https://doi.org/10.1063/1.448118
- Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, vol. 14, iss. 1, pp. 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
- Loof H. D., Nilsson L., Rigler R., Molecular dynamics simulation of galanin in aqueous and nonaqueous solution. J. Am. Chem. Soc., 1992, vol. 114, iss. 11, pp. 4028–4035. https://doi.org/10.1021/ja00037a002
- Frisch M. J., Trucks G., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M. [et al.]. Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT, 2009.
- Kollipost F., Wugt Larsen R., Domanskaya A. V., Nörenberg M., Suhm M. A., Communication: The highest frequency hydrogen bond vibration and an experimental value for the dissociation energy of formic acid dimer. J. Chem. Phys., 2012, vol. 136, iss. 15, art. 151101. https://doi.org/10.1063/1.4704827
- Rocher-Casterline B. E., Ch’ng L. C., Mollner A. K., Reisler H. Communication: Determination of the bond dissociation energy (D0) of the water dimer, (H2O)2, by velocity map imaging. J. Chem. Phys., 2011, vol. 134, iss. 21, art. 211101. https://doi.org/10.1063/1.3598339
- Nakayama T., Fukuda H., Kamikawa T., Sakamoto Y. Sugita A., Kawasaki M., Amano T., Sato H., Sakaki S., Morino I., Inoue G. Effective interaction energy of water dimer at room temperature: An experimental and theoretical study. J. Chem. Phys., 2007, vol. 127, iss. 13, art. 134302. https://doi.org/10.1063/1.2773726
- Ruscic B. Active thermochemical tables: Water and Water Dimer. J. Phys. Chem. A, 2013, vol. 117, iss. 46, pp. 11940–11953. https://doi.org/10.1021/jp403197t
- Becke A. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, vol. 98, iss. 7, pp. 5648–5652. https://doi.org/10.1063/1.464913
- Lee C., Yang W., Parr R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, vol. 37, iss. 2, pp. 785–789. https://doi.org/10.1103/PhysRevB.37.785
- Chai J.-D., Head-Gordon M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys, 2008, vol. 128, iss. 8, art. 084106. https://doi.org/10.1063/1.2834918
- Simon S., Duran M., Dannenberg J. How does basis set superposition error change the potential surfaces for hydrogen‐bonded dimers? J. Chem. Phys., 1996, vol. 105, iss. 24, pp. 11024–11031. https://doi.org/10.1063/1.472902
- Fayfel A. B., Berezin K. V. Program for calculating thermodynamic characteristics of intermolecular complexes based on quantum-mechanical calculations. Tuchin V. V., ed. Problemy opticheskoj fiziki: Materialy 7 Mezhdunarodnoj molodezhnoj nauchnoj shkoly po optike, lazernoj fizike i biofizike. Vol. 2 [Problems of Optical Physics: Proceedings of the 7th International youth scientific school on optics, laser physics and biophysics. Vol. 2]. Saratov, The State Scientific Center “College” Publ., 2004, pp. 100–101 (in Russian).
- Iogansen A. V. Infrared spectroscopy and spectral determination of hydrogen bond energy. In: Sokolov N. D., ed. Vodorodnaya svyaz’ [Hydrogen bond]. Moscow, Nauka, 1981, pp. 112–155 (in Russian).
补充文件

