Development of a prototype of flexible antennas with a passivation layer for electrical impedance sensors
- 作者: Serdobintsev A.A.1, Kozhevnikov I.O.1, Ryabov E.A.1, Gusliakova O.I.1, Prikhozhdenko E.S.1
-
隶属关系:
- Saratov State University
- 期: 卷 25, 编号 4 (2025)
- 页面: 414-424
- 栏目: Radiophysics, Electronics, Acoustics
- URL: https://journals.rcsi.science/1817-3020/article/view/357325
- DOI: https://doi.org/10.18500/1817-3020-2025-25-4-414-424
- EDN: https://elibrary.ru/IKBCSO
- ID: 357325
如何引用文章
全文:
详细
作者简介
Alexey Serdobintsev
Saratov State University
ORCID iD: 0000-0003-3281-8352
SPIN 代码: 4810-8099
Scopus 作者 ID: 7801334782
Researcher ID: D-9413-2013
410012, Russia, Saratov, Astrakhanskaya street, 83
Ilya Kozhevnikov
Saratov State University
ORCID iD: 0000-0001-8911-3084
SPIN 代码: 5442-5056
Scopus 作者 ID: 56637928700
Researcher ID: ADC-2567-2022
410012, Russia, Saratov, Astrakhanskaya street, 83
Evgenii Ryabov
Saratov State University
ORCID iD: 0000-0003-4777-7346
SPIN 代码: 9110-4151
410012, Russia, Saratov, Astrakhanskaya street, 83
Olga Gusliakova
Saratov State University
ORCID iD: 0000-0001-8387-0711
SPIN 代码: 2642-9014
Scopus 作者 ID: 57202360091
Researcher ID: T-5616-2018
410012, Russia, Saratov, Astrakhanskaya street, 83
Ekaterina Prikhozhdenko
Saratov State University
ORCID iD: 0000-0003-2700-168X
SPIN 代码: 3258-1666
410012, Russia, Saratov, Astrakhanskaya street, 83
参考
- Zhan Y., Mei Y., Zheng L. Materials capability and device performance in flexible electronics for the Internet of Things. J. Mater. Chem. C, 2014, vol. 2, iss. 7, pp. 1220–1232. https://doi.org/10.1039/C3TC31765J
- Kirtania S. G., Elger A. W., Hasan M. R., Wisniewska A., Sekhar K., Karacolak T., Sekhar P. K. Flexible antennas: A review. Micromachines, 2020, vol. 11, iss. 9, art. 847. https://doi.org/10.3390/mi11090847
- Sethi P., Sarangi S. R. Internet of things: Architectures, protocols and applications. J. Electr. Comput. Eng., 2017, vol. 2017, art. 9324035. https://doi.org/10.1155/2017/9324035
- Gao W., Zhu Y., Wang Y., Yuan G., Liu J. M. A review of flexible perovskite oxide ferroelectric films and their application. J. Materiomics, 2020, vol. 6, iss. 1, pp. 1–16. https://doi.org/10.1016/j.jmat.2019.11.001
- Huang S., Liu Y., Zhao Y., Ren Z., Guo C. F. Flexible electronics: Stretchable electrodes and their future. Adv. Funct. Mater., 2019, vol. 29, iss. 6, art. 1805924. https://doi.org/10.1002/adfm.201805924
- Park J., Park S., Yang W., Kam D. G. Folded aperture coupled patch antenna fabricated on FPC with vertically polarised end-fire radiation for fifth-generation millimetre-wave massive MIMO systems. IET Microwaves, Antennas Propag., 2019, vol. 13, iss. 10, pp. 1660–1663. https://doi.org/10.1049/iet-map.2018.5952
- Thielens A., Deckman I., Aminzadeh R., Arias A. C., Rabaey J. M. Fabrication and characterization of flexible spray-coated antennas. IEEE Access., 2018, vol. 6, pp. 62050–62061. https://doi.org/10.1109/ACCESS.2018.2876286
- Khaleel H. R., Al-Rizzo H. M., Rucker D. G., Mohan S. A Compact Polyimide-Based UWB Antenna for Flexible Electronics. IEEE Antennas Wirel. Propag. Lett., 2012, vol. 11, pp. 564–567. https://doi.org/10.1109/LAWP. 2012.2199956
- Mo L., Guo Z., Wang Z., Yang L., Fang Y., Xin Z., Li X., Chen Y., Cao M., Zhang Q., Li L. Nano-silver ink of high conductivity and low sintering temperature for paper electronics. Nanoscale Res. Lett., 2019, vol. 14, art. 197. https://doi.org/10.1186/s11671-019-3011-1
- Sharma P. K., Chung J.-Y. Poly-flex-antennas: Application of polymer substrates in flexible antennas. Express Polym. Lett., 2024, vol. 18, iss. 4, pp. 371–390. https://doi.org/10.3144/expresspolymlett.2024.28
- Lee J. S., Kim M., Oh J., Kim J., Cho S., Jun J., Jang J. Platinum-decorated carbon nanoparticle/polyaniline hybrid paste for flexible wideband dipole tag-antenna application. J. Mater. Chem. A, 2015, vol. 3, iss. 13, pp. 7029–7035. https://doi.org/10.1039/C4TA07064J
- Ali Khan M. U., Raad R., Tubbal F., Theoharis P. I., Liu S., Foroughi J. Bending analysis of polymer-based flexible antennas for wearable, general IoT applications: A Review. Polymers, 2021, vol. 13, iss. 3, art. 357. https://doi.org/10.3390/polym13030357
- Guerchouche K., Herth E., Calvet L. E., Roland N., Loyez C. Conductive polymer based antenna for wireless green sensors applications. Microelectron. Eng., 2017, vol. 182, pp. 46–52. https://doi.org/10.1016/j.mee.2017.08.007
- Zhou Y., Bayram Y., Du F., Dai L., Volakis J. L. Polymer-Carbon Nanotube Sheets for Conformal Load Bearing Antennas. IEEE Trans. Antennas Propag., 2010, vol. 58, iss. 7, pp. 2169–2175. https://doi.org/10.1109/TAP.2010.2048852
- Zhang J., Song R., Zhao X., Fang R., Zhang B., Qian W., Zhang J., Liu C., He D. Flexible graphene-assembled film-based antenna for wireless wearable sensor with miniaturized size and high sensitivity. ACS Omega, 2020, vol. 5, iss. 22, pp. 12937–12943. https://doi.org/10.1021/acsomega.0c00263
- RF Patent No. RU 2778215 C1. IPC H01L 21/56, H01L 51/50, B82Y 30/00. Technologies for producing flexible and transparent electronic components based on grapheme-like structures in polymer for electronics and microelectronics. Declared November 8, 2021, published August 15, 2022. Shiversky A. V., Abaimov S. G., Akhatov I. Sh. Patent Holder: Skolkovo Institute of Science and Technology. Available at: https://patents.google.com/patent/RU2778215C1/ru (accessed September 21, 2025) (in Russian).
- Gharode D., Nella A., Rajagopal M. State-of-art design aspects of wearable, mobile, and flexible antennas for modern communication wireless systems. Int. J. Commun. Syst., 2021, vol. 34, iss. 15, art. e4934. https://doi.org/10.1002/dac.4934
- Locher I., Klemm M., Kirstein T., Troster G. Design and characterization of purely textile patch antennas. IEEE Trans. Adv. Packag., 2006, vol. 29, iss. 4, pp. 777–788. https://doi.org/10.1109/TADVP.2006.884780
- AbuTarboush H., Farooqui M., Shamim A. Inkjet-printed wideband antenna on resin-coated paper substrate for curved wireless devices. IEEE Antennas Wirel. Propag. Lett., 2015, vol. 15, pp. 20–23. https://doi.org/10.1109/LAWP.2015.2425797
- Arsenov P. V., Sobolev A. S., Efimov A. A., Ivanov V. V. Double slot aerosol jet printed antenna for X-band applications. J. Phys.: Conf. Ser., 2021, vol. 2086, art. 012047. https://doi.org/10.1088/1742-6596/2086/1/012047
- Roshni S. B., Jayakrishnan M. P., Mohanan P., Surendran K. P. Design and fabrication of an E-shaped wearable textile antenna on PVB-coated hydrophobic polyester fabric. Smart Mater. Struct., 2017, vol. 26, iss. 10, art. 105011. https://doi.org/10.1088/1361-665X/aa7c40
- El Gharbi M., Fernández-García R., Ahyoud S., Gil I. A Review of flexible wearable antenna sensors: Design, fabrication methods and applications. Materials, 2020, vol. 13, iss. 17, art. 3781. https://doi.org/10.3390/ma13173781
- Agasieva S. V., Sedankin M. K., Leushin V. Y., Gudkov A. G., Zhuravleva K. V., Porokhov I. O., Gudkov G. A., Vesnin S. G. Conformal medical antenna based on a flexible subsrtate. Biomedical Engineerig, 2022, vol. 6, iss. 6 (336), pp. 1–4 (in Russian). EDN: CWNGEN
- Artemova T. K., Artemov K. S. An analysis of deformed flexible wearable patch antenna parameters. Rodionov A., ed. 2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), Novosibirsk, Stptember 18–22, 2017. IEEE, 2017, pp. 382–385. https://doi.org/10.1109/SIBIRCON.2017.8109911
- Starodubov A. V., Galushka V. V., Serdobintsev A. A., Pavlov A. M., Korshunova G. A., Ryabukho P. V., Gorodkov S. Y. A novel approach for fabrication of flexible antennas for biomedical applications. 2018 18th Mediterranean Microwave Symposium (MMS), Istanbul, Turkey, 1 October – 02 November 2018. IEEE, 2018, pp. 303–306. https://doi.org/10.1109/MMS.2018.8612092
- Starodubov A. V., Serdobintsev A. A., Galushka V. V., Ryabukho P. V., Kozhevnikov I. O., Pavlov A. M. Study of flexible monopole antenna with coplanar feeding structure fabricated by magnetron sputtering and laser ablation technologies. Antennas Design and Measurement International Conference (ADMInC), 2019, St. Petersburg Russia, 16–18 October 2019. IEEE, 2019, pp. 138–140. https://doi.org/10.1109/ADMInC47948.2019.8969323
- Ozhogin I. S., Serdobintsev A. A., Kozhevnikov I. O., Chistyakov I. A., Galushka V. V., Pavlov A. M., Starodubov A. V. On the optimal operational mode of a CNC-controlled laser machine for ablation of thin metal layers on flexible dielectric substrates. Proc. SPIE, 2020, vol. 11846, art. 1184607. https://doi.org/10.1117/12.2591939
- Liu L., Li L., Zhang S., Xu W., Wang Q. Polyimide-based dielectric materials for high-temperature capacitive energy storage. Electron. Mater., 2024, vol. 5, pp. 303–320. https://doi.org/10.3390/electronicmat5040019
- Serdobintsev A. A., Venig S. B., Kozlowsky A. V., Volkovoynova L. D. Influence of bending on the structural properties of crystallized silicon films on flexible substrates. Izv. Saratov Univ. Physics, 2024, vol. 24, iss. 3, pp. 290–296. https://doi.org/10.18500/1817-3020-2024-24-3-290-296 (in Russian).
- Chikova O. A., Tkachuk G. A., V’yukhin V. V. Viscosity of Cu–Ni melts. Russ. J. Phys. Chem., 2019, vol. 93, pp. 198–203. https://doi.org/10.1134/S0036024419020067
- McPeak K. M., Jayanti S. V., Kress S. J. P., Meyer S., Iotti S., Rossinelli A., Norris D. J. Plasmonic films can easily be better: Rules and recipes. ACS Photonics, 2015, vol. 2, iss. 3, pp. 326–333. https://doi.org/10.1021/ph5004237
- Werner W. S. M., Glantschnig K., Ambrosch-Draxl C. Optical constants and inelastic electron-scattering data for 17 elemental metals. J. Phys. Chem. Ref. Data, 2009, vol. 38, iss. 4, pp. 1013–1092. https://doi.org/10.1063/1.3243762
- Palm K. J., Murray J. B., Narayan T. C., Munday J. N. Dynamic optical properties of metal hydrides. ACS Photonics, 2018, vol. 5, iss. 11, pp. 4677–4686. https://doi.org/10.1021/acsphotonics.8b01243
补充文件

