Electrically conductive properties of graphene–nanotube hybrid/aluminium oxide interfaces
- Авторлар: Slepchenkov M.M.1, Murashko D.T.2, Kuksin A.V.2, Ryazanov R.M.3,2,1, Lebedev E.A.2, Shaman Y.P.3, Kitsyuk E.P.3, Gerasimenko A.Y.2, Glukhova O.E.1
-
Мекемелер:
- Saratov State University
- National Research University «Moscow Institute of Electronic Technology»
- Scientific-Manufacturing Complex “Technological Centre”
- Шығарылым: Том 25, № 3 (2025)
- Беттер: 356-368
- Бөлім: Nanotechnologies, Nanomaterials and Metamaterials
- URL: https://journals.rcsi.science/1817-3020/article/view/357318
- DOI: https://doi.org/10.18500/1817-3020-2025-25-3-356-368
- EDN: https://elibrary.ru/TXLUUP
- ID: 357318
Дәйексөз келтіру
Толық мәтін
Аннотация
Негізгі сөздер
Авторлар туралы
Mikhail Slepchenkov
Saratov State University
ORCID iD: 0000-0002-4282-5620
SPIN-код: 9066-0896
Scopus Author ID: 36844856100
ResearcherId: D-8991-2013
410012, Russia, Saratov, Astrakhanskaya street, 83
Denis Murashko
National Research University «Moscow Institute of Electronic Technology»
ORCID iD: 0000-0002-9437-8260
SPIN-код: 5630-4950
1, Shokin Sqr., Moscow, Zelenograd, 124498, Russia
Artem Kuksin
National Research University «Moscow Institute of Electronic Technology»
ORCID iD: 0000-0001-8406-9977
SPIN-код: 1297-6256
1, Shokin Sqr., Moscow, Zelenograd, 124498, Russia
Roman Ryazanov
Scientific-Manufacturing Complex “Technological Centre”; National Research University «Moscow Institute of Electronic Technology»; Saratov State University
ORCID iD: 0000-0002-2464-8712
SPIN-код: 5231-4355
Scopus Author ID: 57015665000
1 Shokin Square, Moscow 124498, Russia
Egor Lebedev
National Research University «Moscow Institute of Electronic Technology»
ORCID iD: 0000-0002-5085-5408
SPIN-код: 9787-8723
1, Shokin Sqr., Moscow, Zelenograd, 124498, Russia
Yury Shaman
Scientific-Manufacturing Complex “Technological Centre”
ORCID iD: 0000-0001-7577-4746
SPIN-код: 8036-6705
Scopus Author ID: 15073626900
1 Shokin Square, Moscow 124498, Russia
Evgeny Kitsyuk
Scientific-Manufacturing Complex “Technological Centre”
ORCID iD: 0000-0002-4166-8408
SPIN-код: 1322-5130
Scopus Author ID: 55249675500
ResearcherId: E-8236-2014
1 Shokin Square, Moscow 124498, Russia
Alexander Gerasimenko
National Research University «Moscow Institute of Electronic Technology»
ORCID iD: 0000-0001-6514-2411
SPIN-код: 2010-1600
1, Shokin Sqr., Moscow, Zelenograd, 124498, Russia
Olga Glukhova
Saratov State University
ORCID iD: 0000-0002-5670-2058
SPIN-код: 6656-9658
Scopus Author ID: 55900629900
ResearcherId: C-5497-2013
410012, Russia, Saratov, Astrakhanskaya street, 83
Әдебиет тізімі
- Chaudhry M. A., Hussain R., Butt F. K., eds. Metal Oxide-Carbon Hybrid Materials: Synthesis, Properties and Applications. Elsevier Metal Oxides Series. Amsterdam, Elsevier, 2022. 588 p.
- Daneshvar F., Chen H., Noh K., Sue H. J. Critical challenges and advances in the carbon nanotube–metal interface for next-generation electronic. Nanoscale Adv., 2021, vol. 3, iss. 4, pp. 942–962. https://doi.org/10.1039/D0NA00822B
- Mishra H., Panda J., Ramu M., Sarkar T., Dayen J. F., Belotcerkovtceva D., Kamalakar M. V. Experimental advances in charge and spin transport in chemical vapor deposited graphene. J. Phys. Mater., 2021, vol. 4, art. 042007. https://doi.org/10.1088/2515-7639/ac1247
- Maciel R. P., Eriksson O., Kvashnin Y. O., Thonig D., Belotcerkovtceva D., Kamalakar M. V., Ong C. S. Resistive switching in graphene: A theoretical case study on the alumina-graphene interface. Phys. Rev. Research, 2023, vol. 5, art. 043147. https://doi.org/10.1103/PhysRevResearch.5.043147
- Martinez-Martinez R., Islam M. M., Krishnaprasad A., Roy T. Graphene-oxide interface for optoelectronic synapse application. Sci. Rep., 2022, vol. 12, iss. 1, art. 5880. https://doi.org/10.1038/s41598-022-09873-8
- Belotcerkovtceva D., Maciel R. P., Berggren E., Maddu R., Sarkar T., Kvashnin Y. O., Thonig D., Lindblad A., Eriksson O., Kamalakar M. V. Insights and implications of intricate surface charge transfer and sp3-defects in graphene/metal oxide interfaces. ACS Appl. Mater. Interfaces, 2022, vol. 14, pp. 36209−36216. https://doi.org/10.1021/acsami.2c06626
- Alnuaimi A., Almansouri I., Saadat I., Nayfeh A. Interface engineering of graphene–silicon Schottky junction solar cells with an Al2O3 interfacial layer grown by atomic layer deposition. RSC Adv., 2018, vol. 8, pp. 10593−10597. https://doi.org/10.1039/c7ra13443f
- Gusmão M. S., Ghosh A., Frota H. O. Electronic transport properties of graphene/Al2O3 (0001) interface. Curr. Appl. Phys., 2018, vol. 18, iss. 1, pp. 90−95. https://doi.org/10.1016/j.cap.2017.10.008
- Fisichella G., Schilirò E., Di Franco S., Fiorenza P., Lo Nigro R., Roccaforte F., Ravesi S., Giannazzo F. Interface electrical properties of Al2O3 thin films on graphene obtained by atomic layer deposition with an in situ seedlike layer. ACS Appl. Mater. Interfaces, 2017, vol. 9, iss. 8, pp. 7761−7771. https://doi.org/10.1021/acsami.6b15190
- Vu V. B., Bubendorff J. L., Mouafo L. D. N., Latil S., Zaarour A., Dayen J-F., Simon L., Dappe Y. J. Graphene/aluminum oxide interfaces for nanoelectronic devices. Electron. Struct., 2023, vol. 5, no. 4, art. 045005. https://doi.org/10.1088/2516-1075/acff9e
- Hu Y. Z., Li J., Luo L. L., Hu S. L., Shen H. H., Long X. G. Regulating interface interaction in alumina/graphene composites with nano alumina coating transition layers. RSC Adv., 2024, vol. 14, iss. 28, pp. 20020−20031. https://doi.org/10.1039/D4RA00356J
- Qin S. C., Liu Y. D., Jiang H. Z., Xu Y., Shi Y., Zhang R., Wang F. All-carbon hybrids for high-performance electronics, optoelectronics and energy storage. Sci. China. Inf. Sci., 2019, vol. 62, iss. 12, art. 220403. https://doi.org/10.1007/s11432-019-2676-x
- Li Y., Ai Q., Mao L., Guo J., Gong T., Lin Y., Wu G., Huang W., Zhang X. Hybrid strategy of graphene/carbon nanotube hierarchical networks for highly sensitive, flexible wearable strain sensors. Sci. Rep., 2021, vol. 11, iss. 1, art. 21006. https://doi.org/10.1038/s41598-021-00307-5
- Sheng J., Han Z., Jia G., Zhu S., Xu Y., Zhang X., Yao Y., Li Y. Covalently bonded graphene sheets on carbon nanotubes: Direct growth and outstanding properties. Adv. Funct. Mater., 2023, vol. 33, art. 230678. https://doi.org/10.1002/adfm.202306785
- Liu B., Sun J., Zhao J., Yun X. Hybrid graphene and carbon nanotube–reinforced composites: Polymer, metal, and ceramic matrices. Adv. Compos. Hybrid Mater., 2025, vol. 8, art. 1. https://doi.org/10.1007/s42114-024-01074-3
- Lan M., Jia X., Tian R., Feng L., Shao D., Song H. Advancing multifunctional thermal management with multistate graphene/CNTs conjugated hybrids. Carbon, 2024, vol. 219, art. 118850. https://doi.org/10.1016/j.carbon.2024.118850
- Hong Z., Zheng Z., Kong L., Zhao L., Liu S., Li W., Shi J. Welded carbon nanotube–graphene hybrids with tunable strain sensing behavior for wide-range bio-signal monitoring. Polymers, 2024, vol. 16, iss. 2, art. 238. https://doi.org/10.3390/polym16020238
- Li Z., Li Z. H., Zhang Y., Xu X., Cheng Y., Zhang Y., Zhao J., Wei N. Highly sensitive weaving sensor of hybrid graphene nanoribbons and carbon nanotubes for tnhanced pressure sensing function. ACS Sens., 2024, vol. 9, iss. 5, pp. 2499–2508. https://doi.org/10.1021/acssensors.4c00170
- Lee C., Wei X., Kysar J. W., Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, vol. 321, iss. 5887, pp. 385–388. https://doi.org/10.1126/science.1157996
- Lv R., Cruz-Silva E., Terrones M. Building Complex Hybrid Carbon Architectures by Covalent Interconnections: Graphene-Nanotube Hybrids and More. ACS Nano, 2014, vol. 8, iss. 5, pp. 4061–4069. https://doi.org/10.1021/nn502426c
- Tristán-López F., Morelos-Gómez A., Vega-Díaz S. M., García-Betancourt M. L., Perea-López N., Elías A. L., Muramatsu H., Cruz-Silva R., Tsuruoka, S., Kim Y. A., Hayahsi T., Kaneko K., Endo M., Terrones M. Large area films of alternating graphene-carbon nanotube layers processed in water. ACS Nano, 2013, vol. 7, iss. 12, pp. 10788–10798. https://doi.org/10.1021/nn404022m
- Du W., Ahmed Z., Wang Q., Yu C., Feng Z., Li G., Zhang M., Zhou C., Senegor R., Yang C. Y. Structures, properties, and applications of CNT-graphene heterostructures. 2D Mater., 2019, vol. 6, iss. 4, art. 042005. https://doi.org/10.1088/2053-1583/ab41d3
- Jiang Y., Song S., Mi M., Yu L., Xu L., Jiang P., Wang Y. Improved Electrical and Thermal Conductivities of Graphene–Carbon Nanotube Composite Film as an Advanced Thermal Interface Material. Energies, 2023, vol. 16, iss. 3, pp. 1378. https://doi.org/10.3390/en16031378
- Al-Saleh M. H. Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synthetic Metals, 2015, vol. 209, pp. 41–46. https://doi.org/10.1016/j.synthmet.2015.06.023
- Kholmanov I. N., Magnuson C. W., Piner R., Kim J. Y., Aliev A. E., Tan C., Kim T. Y., Zakhidov A. A., Sberveglieri G., Baughman R. H., Ruoff R. S. Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv. Mater., 2015, vol. 27, iss. 19, pp. 3053–3059. https://doi.org/10.1002/adma.201500785
- Slepchenkov M. M., Barkov P. V., Glukhova O. E. Features of the atomic structure and electronic properties of hybrid films formed by single-walled carbon nanotubes and bilayer graphene. Izvestiya of Saratov University. Physics, 2021, vol. 21, iss. 4, pp. 302–314 (in Russian). https://doi.org/10.18500/1817-3020-2021-21-4-302-314
- Gerasimenko A. Y., Kuksin A. V., Shaman Y. P., Kitsyuk E. P., Fedorova Y. O., Sysa A. V., Pavlov A. A., Glukhova O. E. Electrically conductive networks from hybrids of carbon nanotubes and graphene created by laser radiation. Nanomaterials, 2021, vol. 11, iss. 8, art. 1875. https://doi.org/10.3390/nano11081875
- Etesami M., Nguyen M. T., Yonezawa T., Tuantranont A., Somwangthanaroj A., Kheawhom S. 3D carbon nanotubes-graphene hybrids for energy conversion and storage applications. Chem. Eng. J., 2022, vol. 446, pt. 3, art. 137190. https://doi.org/10.1016/j.cej.2022.137190
- Pyo S., Eun Y., Sim J., Kim K., Choi J. Carbon nanotube-graphene hybrids for soft electronics, sensors, and actuators. Micro Nano Syst. Lett., 2022, vol. 10, art. 9. https://doi.org/10.1186/s40486-022-00151-w
- Zhang Y., Li Y., Sun J., You Q., Li K., Zhu M., Deng T. A micro broadband photodetector based on single wall carbon nanotubes–graphene heterojunction. J. Light. Technol., 2022, vol. 40, iss. 1, pp. 149–155. https://doi.org/10.1109/JLT.2021.3120184
- Zhang Y., Li Y., You Q., Sun J., Li K., Hong H., Kong L., Zhu M., Deng T., Liu Z. A broadband 3D microtubular photodetector based on a single wall carbon nanotube-graphene heterojunction. Nanoscale, 2023, vol. 15, iss. 3, pp. 1402–1411. https://doi.org/10.1039/D2NR05819G
- Gerasimenko A. Y., Kuksin A. V., Shaman Y. P., Kitsyuk E. P., Fedorova Y. O., Murashko D. T., Shamanaev A. A., Eganova E. M., Sysa A. V., Savelyev M. S., Telyshev D. V., Pavlov A. A., Glukhova O. E. Hybrid carbon nanotubes–graphene nanostructures: Modeling, formation, characterization. Nanomaterials, 2022, vol. 12, iss. 16, art. 2812. https://doi.org/10.3390/nano12162812
- Wang G., Liu L., Zhang Z. Interface mechanics in carbon nanomaterials-based nanocomposites. Composites A: Appl. Sci. Manuf., 2021, vol. 141, iss. 6414, art. 106212. https://doi.org/10.1016/j.compositesa.2020.106212
- Wang Y., Zhou W., Cao K., Hu X., Gao L., Lu Y. Architectured graphene and its composites: Manufacturing and structural applications. Compositesa A: Appl. Sci. Manuf., 2021, vol. 140, art. 106177. https://doi.org/10.1016/j.compositesa.2020.106177
- Xie Y., Kocaefe D., Kocaefe Y., Cheng J., Liu W. The effect of novel synthetic methods and parameters control on morphology of nano-alumina particles. Nanoscale Res. Lett., 2016, vol. 11, iss. 1, art. 259. https://doi.org/10.1186/s11671-016-1472-z
- Nakamiya T., Ueda T., Ikegami T., Mitsugi F., Ebihara K., Sonoda Y., Iwasaki Y., Tsuda R. Effect of a pulsed Nd: YAG laser irradiation on multi-walled carbon nanotubes film. Thin Solid Films, 2009, vol. 517, iss. 14, pp. 3854–3858. https://doi.org/10.1016/j.tsf.2009.01.097
- Zhang X., Yang L., Liu H. High-temperature conduction behavior of carbon nanotube fiber from 25°C to 1100°C. Appl. Phys. Lett., 2018, vol. 112, iss. 16, art. 164103. https://doi.org/10.1063/1.5026889
Қосымша файлдар

