Microgels containing whey protein as a new way of treating bladder and renal diseases
- Authors: Mayorova O.A.1, Gusliakova O.I.1, Saveleva M.S.1, Kulikov O.A.2, Inozemtseva O.A.1
-
Affiliations:
- Saratov State University
- National Research Ogarev Mordovia State University
- Issue: Vol 25, No 1 (2025)
- Pages: 76-85
- Section: Biophysics and Medical Physics
- URL: https://journals.rcsi.science/1817-3020/article/view/357278
- DOI: https://doi.org/10.18500/1817-3020-2025-25-1-76-85
- EDN: https://elibrary.ru/MATQYP
- ID: 357278
Cite item
Full Text
Abstract
About the authors
Oksana Aleksandrovna Mayorova
Saratov State University
ORCID iD: 0000-0002-6440-3947
SPIN-code: 9797-3099
410012, Russia, Saratov, Astrakhanskaya street, 83
Olga Igorevna Gusliakova
Saratov State University
ORCID iD: 0000-0001-8387-0711
SPIN-code: 2642-9014
Scopus Author ID: 57202360091
ResearcherId: T-5616-2018
410012, Russia, Saratov, Astrakhanskaya street, 83
Mariia Sergeevna Saveleva
Saratov State University
ORCID iD: 0000-0003-2021-0462
SPIN-code: 8798-7027
Scopus Author ID: 57194773477
ResearcherId: M-5204-2016
410012, Russia, Saratov, Astrakhanskaya street, 83
Oleg A. Kulikov
National Research Ogarev Mordovia State University
ORCID iD: 0000-0002-0739-3981
SPIN-code: 8966-9370
68 Bolshevistskaya St., Saransk 430005, Republic of Mordovia, Russia
Olga Aleksandrovna Inozemtseva
Saratov State University
ORCID iD: 0000-0002-8898-8169
SPIN-code: 6256-2416
410012, Russia, Saratov, Astrakhanskaya street, 83
References
- Kolman K. B. Cystitis and Pyelonephritis. Prim. Care Clin. Off. Pract., 2019, vol. 46, pp. 191–202. https://doi.org/10.1016/j.pop.2019.01.001
- Jansåker F., Li X., Vik I., Frimodt-Møller N., Knudsen J. D., Sundquist K. The Risk of Pyelonephritis Following Uncomplicated Cystitis: A Nationwide Primary Healthcare Study. Antibiotics, 2022, vol. 11, iss. 12, art. 1695. https://doi.org/10.3390/antibiotics11121695
- Jhamb M., Lin J., Ballow R., Kamat A. M., Grossman H. B., Wu X. Urinary tract diseases and bladder cancer risk: A case-control study. Cancer Causes Control, 2007, vol. 18, pp. 839–845. https://doi.org/10.1007/s10552-007-9028-2
- Kantor F., Hartge P., Hoover R. N., Narayana A. S., Sullivan J. W., Fraumeni J. F. Urinary tract infection and risk of bladder cancer. Am. J. Epidemiol., 1984, vol. 119, pp. 510–515. https://doi.org/10.1093/oxfordjournals.aje.a113768
- Maisonneuve P., Agodoa L., Gellert R., Stewart J. H., Buccianti G., Lowenfels A. B., Wolf R. A., Jones E., Dsiney A. P., Briggs D., McCredie M., Boyle P. Cancer in patients on dialysis for end-stage renal disease: An international collaborative study. Lancet, 1999, vol. 354, pp. 93–99. https://doi.org/10.1016/S0140-6736(99)06154-1
- Gupta K., Hooton T. M., Naber K. G., Wullt B., Colgan R., Miller L. G., Moran G. J., Nicolle L. E., Raz R., Schaeffer A. J., Soper D. E. International Clinical Practice Guidelines for the Treatment of Acute Uncomplicated Cystitis and Pyelonephritis in Women: A 2010 Update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis., 2011, vol. 52, pp. e103–e120. https://doi.org/10.1093/cid/ciq257
- Rădulescu A., Mădan V., Aungurenci A., Bratu O., Farcaș C., Dinu M., Mischianu D. Antibiotic resistant urinary tract infections in an urology ward. Rom. J. Mil. Med., 2015, vol. 118, pp. 20–22.
- Pietrucha-Dilanchian P., Hooton T. M. Diagnosis, Treatment, and Prevention of Urinary Tract Infection. Microbiol. Spectr., 2016, vol. 4, no. 6, art. uti-0021-2015. https://doi.org/10.1128/microbiolspec.UTI-0021-2015
- Kallen A. J., Welch H. G., Sirovich B. E. Current Antibiotic Therapy for Isolated Urinary Tract Infections in Women. Arch. Intern. Med., 2006, vol. 166, iss. 6, pp. 635–639. https://doi.org/10.1001/archinte.166.6.635
- Hsu C., Chuang Y., Chancellor M. B. Intravesical drug delivery for dysfunctional bladder. Int. J. Urol., 2013, vol. 20, pp. 552–562. https://doi.org/10.1111/iju.12085
- Ramakrishnan V. M., Eswara J. R. Basic Bladder Physiology and Anatomy. In: Stiffel J. T., Dray E. V., eds. Urological Care for Patients with Progressive Neurological Conditions. Cham, Springer, 2020, pp. 7–15. https://doi.org/10.1007/978-3-030-23277-1_2
- Min G., Zhou G., Schapira M., Sun T.-T., Kong X.-P. Structural basis of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle. J. Cell Sci., 2003, vol. 116, pp. 4087–4094. https://doi.org/10.1242/jcs.00811
- Irwin D. E., Kopp Z. S., Agatep B., Milsom I., Abrams P. Worldwide prevalence estimates of lower urinary tract symptoms, overactive bladder, urinary incontinence and bladder outlet obstruction. BJU Int., 2011, vol. 108, pp. 1132–1138. https://doi.org/10.1111/j.1464-410X.2010.09993.x
- Tyagi P., Tyagi S., Kaufman J., Huang L., Miguel F. de Local Drug Delivery to Bladder Using Technology Innovations. Urol. Clin. North Am., 2006, vol. 33, pp. 519–530. https://doi.org/10.1016/j.ucl.2006.06.012
- Fang J., Wu P., Fang C., Chen C. Intravesical delivery of 5‐aminolevulinic acid from water‐in‐oil nano/submicron‐emulsion systems. J. Pharm. Sci., 2010, vol. 99, pp. 2375–2385. https://doi.org/10.1002/jps.22006
- Saveleva M. S., Lobanov M. E., Gusliakova O. I., Plastun V. O., Prikhozhdenko E. S., Sindeeva O. A., Gorin D. A., Mayorova O. A. Mucoadhesive Emulsion Microgels for Intravesical Drug Delivery: Preparation, Retention at Urothelium, and Biodistribution Study. ACS Appl. Mater. Interfaces, 2023, vol. 15, iss. 21, pp. 25354–25368. https://doi.org/10.1021/acsami.3c02741
- Chen T.-Y., Tai Y.-Y., Chang L.-C., Wu P.-C. Fabrication, optimisation and evaluation of cisplatin-loaded nanostructured carriers for improved urothelium permeability for intravesical administration. J. Microencapsul., 2021, vol. 38, pp. 405–413. https://doi.org/10.1080/02652048.2021.1957037
- Cannon J. B., Shi Y., Gupta P. Emulsions, microemulsions, and lipid-based drug delivery systems for drug solubilization and delivery–Part I: Parenteral applications. In: Liu R., ed. Water-insoluble drug formulation. CRC Press, 2018, pp. 211–245. https://doi.org/10.1201/9781315120492-10
- Singh Y., Meher J. G., Raval K., Khan F. A., Chaurasia M., Jain N. K., Chourasia M. K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release, 2017, vol. 252, pp. 28–49. https://doi.org/10.1016/j.jconrel.2017.03.008
- Simovic S., Prestidge C. A. Nanoparticle layers controlling drug release from emulsions. Eur. J. Pharm. Biopharm., 2007, vol. 67, pp. 39–47. https://doi.org/10.1016/j.ejpb.2007.01.011
- Buyukozturk F., Benneyan J. C., Carrier R. L. Impact of emulsion-based drug delivery systems on intestinal permeability and drug release kinetics. J. Control. Release, 2010, vol. 142, pp. 22–30. https://doi.org/10.1016/j.jconrel.2009.10.005
- Ming Y., Xia Y., Ma G. Aggregating particles on the O/W interface: Tuning Pickering emulsion for the enhanced drug delivery systems. Aggregate, 2022, vol. 3, iss. 2, art. e162. https://doi.org/10.1002/agt2.162
- Tyagi P., Wu P.-C., Chancellor M., Yoshimura N., Huang L. Recent Advances in Intravesical Drug/Gene Delivery. Mol. Pharm., 2006, vol. 3, pp. 369–379. https://doi.org/10.1021/mp060001j
- Schneider C. A., Rasband W. S., Eliceiri K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 2012, vol. 9, pp. 671–675. https://doi.org/10.1038/nmeth.2089
- Animal Cell Culture Guide. Available at: https://www.atcc.org/resources/culture- guides/animal- cell-culture-guide (accessed September 1, 2024).
- Ostojić S., Pavlović M., Živić M., Filipović Z., Gorjanović S., Hranisavljević S., Dojčinović M. Processing of whey from dairy industry waste. Environ. Chem. Lett., 2005, vol. 3, pp. 29–32. https://doi.org/10.1007/s10311-005-0108-9
- Armetha V., Hariyadi P., Sitanggang A. B., Yuliani S. The stability of whey protein-stabilized red palm oil emulsion from a rheological perspective. Ann. Univ. Dunarea Jos Galati. Fascicle VI – Food Technol., 2022, vol. 46, pp. 35–49. https://doi.org/10.35219/foodtechnology.2022.2.03
- Standard I. Biological evaluation of medical devices – Part 5: Tests for in vitro cytotoxicity. Geneve, Switzerland, International Organization for Standardization, 2023, pp. 1–11.
- Sakaeda T., Hirano K. O/W Lipid Emulsions for Parenteral Drug Delivery. III. Lipophilicity Necessary for Incorporation in Oil Particles Even After Intravenous Injection. J. Drug Target., 1998, vol. 6, pp. 119–127. https://doi.org/10.3109/10611869808997887
- Hippalgaonkar K., Majumdar S., Kansara V. Injectable Lipid Emulsions–Advancements, Opportunities and Challenges. AAPS PharmSciTech, 2010, vol. 11, pp. 1526–1540. https://doi.org/10.1208/s12249- 010-9526-5
- Chansri N., Kawakami S., Yamashita F., Hashida M. Inhibition of liver metastasis by all-trans retinoic acid incorporated into O/W emulsions in mice. Int. J. Pharm., 2006, vol. 321, pp. 42–49. https://doi.org/10.1016/j.ijpharm.2006.05.008
- Huang X., Ma Y., Li Y., Han F., Lin W. Targeted Drug Delivery Systems for Kidney Diseases. Front. Bioeng. Biotechnol., 2021, vol. 9, art. 683247. https://doi.org/10.3389/fbioe.2021.683247
- Minamiguchi K., Tanaka T., Nishiofuku H., Fukuoka Y., Taiji R., Matsumoto T., Saito N., Taguchi H., Marugami N., Hirai T., Kichikawa K. Comparison of embolic effect between water‐in‐oil emulsion and microspheres in transarterial embolization for rat hepatocellular carcinoma model. Hepatol. Res., 2020, vol. 50, pp. 1297–1305. https://doi.org/10.1111/hepr.13561
- Tao S., Lin B., Zhou H., Sha S., Hao X., Wang X., Chen J., Zhang Y., Pan J., Xu J., Zeng J., Wang Y., He X., Huang J., Zhao W., Fan J.-B. Janus particle-engineered structural lipiodol droplets for arterial embolization. Nat. Commun., 2023, vol. 14, art. 5575. https://doi.org/10.1038/s41467-023-41322-6
Supplementary files

