Modelling the effect of osmotic pressure on cancer cell growth: The role of area size and duration of exposure
- Authors: Svetlitsyna N.A.1, Tuchin V.V.1, Semenova N.I.1
-
Affiliations:
- Saratov State University
- Issue: Vol 24, No 4 (2024)
- Pages: 374-383
- Section: Biophysics and Medical Physics
- URL: https://journals.rcsi.science/1817-3020/article/view/287204
- DOI: https://doi.org/10.18500/1817-3020-2024-24-4-374-383
- EDN: https://elibrary.ru/CIRYXU
- ID: 287204
Cite item
Full Text
Abstract
About the authors
Nadezhda Arturovna Svetlitsyna
Saratov State University
ORCID iD: 0009-0004-3095-8268
SPIN-code: 2533-7774
Scopus Author ID: 58888460700
410012, Russia, Saratov, Astrakhanskaya street, 83
Valery Viсtorovich Tuchin
Saratov State University
ORCID iD: 0000-0001-7479-2694
SPIN-code: 7929-3192
410012, Russia, Saratov, Astrakhanskaya street, 83
Nadezhda Igorevna Semenova
Saratov State University
ORCID iD: 0000-0002-9180-3030
SPIN-code: 6741-5068
410012, Russia, Saratov, Astrakhanskaya street, 83
References
- Wang Ch., Zeng Y., Chen K.-F., Lin J., Yuan Q., Jiang X., Wu G., Wang F., Jia Y.-G., Li W. A self-monitoring microneedle patch for light-controlled synergistic treatment of melanoma // Bioactive Materials. 2023. № 27. P. 58–71. https://doi.org/10.1016/j.bioactmat.2023.03.016
- Apalla Z., Nashan D., Weller R. B., Castellsague X. Skin cancer: Epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches // Dermatol. Ther. 2017. Vol. 7. P. 5–19. https://doi.org/10.1007/s13555-016-0165-y
- Lo J. A., Fisher D. E. The melanoma revolution: From UV carcinogenesis to a new era in therapeutics // Science. 2014. Vol. 346, № 6212. P. 945–949. https://doi.org/10.1126/science.1253735
- Saginala K., Barsouk A., Aluru J. S., Rawla P., Barsouk A. Epidemiology of melanoma // Med. Sci. 2021. Vol. 9, № 63. https://doi.org/10.3390/medsci9040063
- Бахарева Ю. О., Тараканова В. О., Рубаняк М. Ю., Каменских Е. М. Меланома кожи (C43): анализ тенденций заболеваемости и смертности в свете пандемии COVID-19, молекулярная эпидемиологи // Вопросы онкологии. 2023. Т. 69, № 4. С. 631–638. https://doi.org/10.37469/0507-3758-2023-69-4-631-638
- Schadendorf D., Berking C., Griewank K. G., Gutzmer R., Hauschild A., Stang A., Roesch A., Ugurel S. Melanoma // The Lancet. 2018. Vol. 392. P. 971–984. https://doi.org/10.1016/S0140-6736(18)31559-9
- Poklepovic A. S., Luke J. J. Considering adjuvant therapy for stage II melanoma // Cancer. 2020. Vol. 12, № 6. P. 116–1174. https://doi.org/10.1002/cncr.32585
- Shirzadfar H., Riahi S., Ghaziasgar M. S. Cancer imaging and brain tumor diagnosis // Journal of Bioanalysis & Biomedicine. 2017. Vol. 9, № 1. https://doi.org/10.4172/1948-593X.1000e149
- Shirzadfar H., Khanahmadi M. Current approaches and novel treatment methods for cancer and radiotherapy // International Journal of Biosensors & Bioelectronics. 2018. Vol. 4, № 5. P. 224–229. https://doi.org/10.15406/ijbsbe.2018.04.00131
- Blackadar C. B. Historical review of the causes of cancer // World J Clin Oncol. 2016. Vol. 7, № 1. P. 54–86. https://doi.org/10.5306/wjco.v7.i1.54
- Li Q., Lei X., Zhu J., Zhong Y., Yang J., Wang J., Tan H. Radiotherapy/Chemotherapy-Immunotherapy for Cancer Management: From Mechanisms to Clinical Implications // Oxidative Medicine and Cellular Longevity. 2023. Vol. 22. P. 1–9. https://doi.org/10.1155/2023/7530794
- Tandle A., Blazer D., Libutti S. Antiangiogenic gene therapy of Cancer: Recent developments // Journal of Translational Medicine. 2024. Vol. 2, № 22. https://doi.org/10.1186/1479-5876-2-22
- Kuznetsov M., Kolobov A. Antiangiogenic Therapy Efficacy Can Be Tumor-Size Dependent, as Mathematical Modeling Suggests // Mathematics. 2024. № 12. P. 353 (1–15). https://doi.org/10.20944/preprints202312.1177.v1
- Kong C., Chen X. Combined Photodynamic and Photothermal Therapy and Immunotherapy for Cancer Treatment: A Review // International Journal of Nanomedicine. 2022. Vol. 17. P. 6427–6446. https://doi.org/10.2147/IJN.S388996
- Тучина Д. К., Меерович И. Г., Синдеева О. А., Жердева В. В., Казачкина Н. И., Соловьев И. Д., Савицкий А. П., Богданов мл. А. А., Тучин В. В. Перспективы мультимодальной визуализации биологических тканей с использованием флуоресцентного имиджинга // Квантовая электроника. 2021. Т. 51, № 2. С. 104–117.
- Tuchin V. V., Zhu D., Genina E. A. Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging. Boca Raton, FL : Taylor & Francis Group LLC ; CRC Press, 2022. 688 p.
- Ye Y., Lin J. Fingering Instability Accelerates Population Growth of a Proliferating Cell Collective // Physical Review Letters. 2024. № 132. P. 018402 (1–7). https://doi.org/10.1101/2023.05.28.542614
- Helmlinger G., Netti P., Lichtenbeld H., Melder R., Jain R. Solid stress inhibits the growth of multicellular tumor spheroids // Nat. Biotechnol. 1997. Vol. 15. P. 778–783. https://doi.org/10.1038/nbt0897-778
- Alessandri K., Sarangi B. R., Gurchenkov V. V., Sinha B., Kießling T. R., Fetler L., Rico F., Scheuring S., Lamaze C., Simon A. Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro // Proc. Natl. Acad. Sci. 2013. Vol. 110, № 37. P. 14843–14848. https://doi.org/10.1073/pnas.1309482110
- Delarue M., Hartung J., Schreck C. F., Gniewek P., Hu L., Herminghaus S., Hallatschek O. Self-driven jamming in growing microbial populations // Nat. Phys. 2016. Vol. 12, № 8. P. 762–766. https://doi.org/10.1038/nphys3741
- Rizzuti F., Mascheroni P., Arcucci S., Ben-M’eriem Z., Prunet A., Barentin C., Rivi‘ere C., Delanoë-Ayari H., Hatzikirou H., Guillermet-Guibert J., Delarue M. Mechanical control of cell proliferation increases resistance to chemotherapeutic agents // Phys. Rev. Lett. 2020. Vol. 125, № 12. P. 128103 (1–7). https://doi.org/10.1103/PhysRevLett.125.128103
- Alric B., Formosa-Dague C., Dague E., Holt L., Delarue M. Macromolecular crowding limits growth under pressure // Nat. Phys. 2022. Vol. 18, № 4. P. 411–416. https://doi.org/10.1038/s41567-022-01506-1
- Liedekerke P. V., Neitsch J., Johann T., Alessandri K., Nassoy P., Drasdo D. Quantitative cell-based model predicts mechanical stress response of growing tumor spheroids over various growth conditions and cell lines // PLoS Comput. Biol. 2019. Vol. 15. P. e1006273 (1–44). https://doi.org/10.1371/journal.pcbi.1006273
- Nürnberg E., Vitacolonna M., Klicks J., von Molitor E., Cesetti T., Keller F., Bruch R., Ertongur-Fauth T., Riedel K., Scholz P., Lau T., Schneider R., Meier J., Hafner M., Rudolf R. Routine optical clearing of 3d-cell cultures: Simplicity forward // Frontiers in Molecular Biosciences. 2020. Vol. 7. P. 1–19. https://doi.org/10.3389/fmolb.2020.00020
- Gunasingh G., Browning A., Haass N. Rapid optical clearing for high-throughput analysis of tumour spheroids // Preprints. 2022. Vol. 186. P. 1–8. https://doi.org/10.20944/preprints202111.0488.v1
- Gayathri K., Puja L., Sebastian J., Sivakumar K., Mishra R. Understanding the combined effects of high glucose induced hyper-osmotic stress and oxygen tension in the progression of tumourigenesis: From mechanism to anti-cancer therapeutics // Cells. 2023. Vol. 12, № 6. P. 825 (1–30). https://doi.org/10.3390/cells12060825
- Романовский Ю. М., Степанова Н. В., Чернавский Д. С. Математическое моделирование в биофизике. М. ; Ижевск : Институт компьютерных исследований, 2003. 402 c.
- Романовский Ю. М., Степанова Н. В., Чернавский Д. С. Математическая биофизика. М. : Наука, 1984. 304 с.
- Hoshino T., Liu M.-W., Wu K.-A., Chen H.-Y., Tsuruyama T., Komura S. Pattern formation of skin cancers: Effects of cancer proliferation and hydrodynamic interactions // Phys. Rev. E. 2019. Vol. 99, № 3. P. 032416. https://doi.org/10.1103/PhysRevE.99.032416
- Семенова Н. И., Тучин В. В. Влияние осмотического давления на раковые клетки в трехмерной клеточной решетке и клеточном сфероиде // Известия высших учебных заведений. Прикладная нелинейная динамика. 2021. Т. 29, № 4. С. 559–570. https://doi.org/10.18500/0869-6632-2021-29-4-559-570
- Semenova N., Tuchin V. V. 3D models of the dynamics of cancer cells under external pressure // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2021. Vol. 31, № 8. P. 083122 (1–8). https://doi.org/10.1063/5.0056764
- Svetlitsyna N., Semenova N., Tuchin V. V. Conditions of acceleration and deceleration of the cancer cell growth under osmotic pressure // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2024. Vol. 34, № 2. P. 0211024 (1–6). https://doi.org/10.1063/5.0189550
- Программа для моделирования роста меланомы на двумерной поверхности эпидермиса в условиях осмотического и механического давления. Семенова Н. И., Светлицына Н. А. Свидетельство о государственной регистрации программы для ЭВМ № 2023665951. Заявка № 2023665233. Дата поступления 23.07.2023. Зарегистрировано в Реестре программ для ЭВМ 24 июля 2023 г.
- Phototherapy for Psoriasis [сайт]. URL: https:/ /www. psoriasis.org/phototherapy/ (дата обращения: 29.06.2024).
- Selifonov A., Selifonova E., Tuchin V. V. Effect of e-liquid on the optical properties of the gingival mucosa: Ex vivo studies // IEEE Journal of Selected Topics in Quantum Electronics. 2023. Vol. 29, iss. 4. P. 7100808 (1–8). https://doi.org/10.1109/JSTQE.2023.3259244
Supplementary files
