Influence of strain differences on resistance of Staphylococcus aureus to photodynamic action using meso-substituted cationic porphyrins

Cover Page

Cite item

Full Text

Abstract

Background and Objectives. Infections associated with antibiotic-resistant strains of microorganisms, including Staphylococcus aureus, pose the greatest danger in nasopharyngeal diseases and post-surgical complications. A number of studies have shown that there are interstrain differences in the sensitivity of clinically significant microorganisms to the damaging effects of antimicrobial photodynamic therapy. In this work, in order to quantify interstrain differences in the responses of bacterial cells to photodynamic exposure, we studied the effectiveness of pyridyl porphyrin compounds in combination with LED radiation against three strains of Staphylococcus aureus. Materials and Methods. The objects of the study were: methicillin-sensitive museum strain S. aureus 209 P, methicillin-sensitive clinical strain S. aureus 5, methicillin-resistant clinical strain S. aureus 11. A LED with a maximum emission spectrum at a wavelength of λ = 405 nm and a half-width of 30 nm at a level of 0.1 of the maximum intensity, a power of 1.8 W and an integrated power density of 80 mW/cm2 was used as a radiation source. In all experiments, the radiation mode was continuous. The irradiation time varied from 5 to 30 min (irradiation doses from 24 to 144 J/cm2 , respectively). Water-soluble meso-substituted cationic pyridylporphyrins were used as photosensitizers: meso-tetrakis(N-(2’-hydroxyethyl)pyridinium-4-yl)porphyrin chloride (H2TOE4PyP) and its Zn(II) derivatives – zinc-meso-tetrakis [4-N-(2’-oxyethyl) pyridyl] porphyrin (Zn-TOE4PyP), zinc-meso-tetrakis [3-N-butyl pyridyl] porphyrin (Zn-TBut3PyP). To assess the level of oxidative stress and the tolerance of microorganisms to it, two different methods were used: 1) a method for determining the minimum inhibitory concentration of hydrogen peroxide, and 2) a method for determining the activity of bacterial catalase. Results and Discussion. The greatest sensitivity to the action of LED radiation was demonstrated by cells of the clinical methicillin-resistant strain S. aureus 11, activated by pyridyl porphyrins. It has been shown that when photosensitizers are used in concentrations of 0.01–0.03 mg/ml after 30 minutes of irradiation, a decrease in the number of cells of this strain occurs by 4.8 lgCFU/ml. It has been found that the activity of catalase in the cells of the methicillin-resistant strain S. aureus 11 is 17% lower compared to the activity of catalase in the cells of the standard strain S. aureus 209 P. This indirectly indicates the greater sensitivity of the strain S. aureus 11 to reactive oxygen species, formed during antimicrobial photodynamic exposure. Conclusion. It has been found that the differences in population reduction between strains range from 1.7 to 2.3 lgCFU/ml at the maximum irradiation dose, depending on the pyridylporphyrin modification used. It has been shown that the antibiotic-resistant strain S. aureus 11, which is highly sensitive to the action of ROS in the form of hydrogen peroxide and incapable of active production of catalase, is most susceptible to the complex action of LED radiation (405 nm) in combination with photosensitizers in the form of zinc- meso-tetrakis[3-N-butyl pyridyl]porphyrin (Zn-TBut3PyP).

About the authors

Elena S. Tuchina

Saratov State University

ORCID iD: 0000-0003-4498-2846
410012, Russia, Saratov, Astrakhanskaya street, 83

Maria V. Korchenova

Saratov State University

ORCID iD: 0000-0002-5398-4045
410012, Russia, Saratov, Astrakhanskaya street, 83

Anna A. Zakoyan

Research and Production Center “Armbiotechnology”; Saratov State University

ORCID iD: 0000-0002-2360-3539
Scopus Author ID: 56770108300
14 Gyurjyan St., Yerevan 0056, Armenia

Valery Viсtorovich Tuchin

Saratov State University

ORCID iD: 0000-0003-1194-9548
410012, Russia, Saratov, Astrakhanskaya street, 83

References

  1. Baptista M. D., Cadet J., Di Mascio P., Ghogare A. A., Greer A., Hamblin M. R., Lorente C., Núñez S. C., Ribeiro M. S., Thomas A. H., Vignoni M., Yoshimura T. M. Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochemistry and Photobiology, 2017, vol. 93, no. 4, pp. 912–919. https://doi.org/10.1111/php.12716
  2. Youf R., Müller M., Balasini A., Thétiot F., Müller M., Hascoët A., Jonas U., Schönherr H., Lemercier G., Montier T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics, 2021, vol. 13, no. 12, article no. 1995. https://doi.org/10.3390/pharmaceutics13121995
  3. Feng Y., Tonon C. C., Ashraf S., Hasan T. Photodynamic and Antibiotic Therapy in Combination against Bacterial Infections: Efficacy, Determinants, Mechanisms, and Future Perspectives. Adv. Drug Deliv. Rev., 2021, vol. 177, article no. 113941. https://doi.org/10.1016/j.addr.2021.113941
  4. Hu X., Huang Y.-Y., Wang Y., Wang X., Hamblin M. R. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Frontiers in Microbiology, 2018, vol. 9, pp. 1–24. https://doi.org/10.3389/fmicb.2018.01299
  5. Ragàs X., He X., Agut M., Roxo-Rosa M., Gonsalves A. R., Serra A. C., Nonell S. Singlet Oxygen in Antimicrobial Photodynamic Therapy: Photosensitizer-Dependent Production and Decay in E. coli. Molecules, 2013, vol. 18, pp. 2712–2725. https://doi.org/10.3390/molecules18032712
  6. Mondal D., Bera S. Porphyrins and phthalocyanines: Promising molecules for light-triggered antibacterial nanoparticles. Nat. Sci. Nanosci. Nanotechnol., 2014, vol. 5, pp. 1–14. https://doi.org/10.1088/2043-6262/5/3/033002
  7. Simões C., Gomes M. C., Neves M. G., Cunha A., Tomé J. P. C., Tomé A. C., Cavaleiro J. A. S., Almeida A., Faustino M. A. F. Photodynamic Inactivation of Escherichia coli with Cationic Meso-Tetraarylporphyrins – The Charge Number and Charge Distribution Effects. Catal. Today, 2016, vol. 266, pp. 197–204. https://doi.org/10.1016/j.cattod.2015.07.031
  8. Kou J., Dou D., Yang L. Porphyrin photosensitizers in photodynamic therapy and its Applications. Oncotarget, 2017, vol. 8, pp. 81591–89603. https://doi.org/10.18632/oncotarget.20189
  9. Sun C., Jora M., Solivio B., Limbach P. A., Addepalli B. The Effects of Ultraviolet Radiation on Nucleoside Modifications in RNA. ACS Chem. Biol., 2018, vol. 13, pp. 567–572. https://doi.org/10.1021/acschembio.7b00898
  10. Lin Y., Zhou T., Bai R., Xie Y. Chemical approaches for the enhancement of porphyrin skeleton-based photodynamic therapy. J. of Enzyme Inhibition and Medicinal Chemistry, 2020, vol. 35, no. 1, pp. 1080–1099. https://doi.org/10.1080/14756366.2020.1755669
  11. Tuchin V. V., Genina E. A., Tuchina E. S., Svetlakova A. V., Svenskaya Y. I. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Advanced Drug Delivery Reviews, 2022, vol. 180, article no. 114037. https://doi.org/10.1016/j.addr.2021.114037
  12. Savelyeva I. O., Zhdanova K. A., Gradova M. A., Gradov O. V., Bragina N. A. Cationic Porphyrins as Antimicrobial and Antiviral Agents in Photodynamic Therapy. Current Issues in Molecular Biology, 2023, vol. 45, no. 12, pp. 9793–9822. https://doi.org/10.3390/cimb45120612
  13. Shatila F., Tieman G. M. O., Musolino S. F., Wulff J. E., Buckley H. L. Antimicrobial Photodynamic Inactivation of Planktonic and Biofilm Cells by Covalently Immobilized Porphyrin on Polyethylene Terephthalate Surface. Int. Biodeterior. Biodegrad., 2023, vol. 178, article no. 105567. https://doi.org/10.1016/j.ibiod.2023.105567
  14. Korchenova M. V., Tuchina E. S., Shvayko V. Y., Gulkhandanyan A. G., Zakoyan A. A., Kazaryan R. K., Gulkhandanyan G. V., Dzhagarov B. M., Tuchin V. V. Photodynamic effect of radiation with the wavelength 405 nm on the cells of microorganisms sensitised by metalloporphyrin compounds. Quantum Electronics, 2016, vol. 46, no. 6, pp. 521–527. https://doi.org/10.1070/qel16110
  15. Grinholc M., Szramka B., Kurlenda J., Graczyk A., Bielawski K. P. Bactericidal effect of photodynamic inactivation against methicillin-resistant and methicillin-susceptible Staphylococcus aureus is strain-dependent. J. of Photochemistry and Photobiology B: Biology, 2008, vol. 90, pp. 57–63. https://doi.org/10.1016/j.jphotobiol.2007
  16. Lipovsky A., Nitzan Y., Friedmann H., Lubart R. Sensitivity of Staphylococcus aureus Strains to Broadband Visible Light. Photochemistry and Photobiology, 2009, vol. 85, pp. 255–260. https://doi.org/10.1111/j.1751-1097.2008.00429.x
  17. Kossakowska M., Nakonieczna J., Kawiak A., Kurlenda J., Bielawski K. P., Grinholc M. Discovering the mechanisms of strain-dependent response of Staphylococcus aureus to photoinactivation: Oxidative stress toleration, endogenous porphyrin level and strain’s virulence. Photodiagnosis and Photodynamic Therapy, 2013, vol. 10, pp. 348–355. https://doi.org/10.1016/j.pdpdt.2013.02.004
  18. Bartolomeu M., Rocha S., Cunha A., Neves M. G., Faustino M. A., Almeida A. Effect of Photodynamic Therapy on the Virulence Factors of Staphylococcus aureus. Frontiers in Microbiology, 2016, vol. 7, pp. 267–278. https://doi.org/10.3389/fmicb.2016.00267
  19. Zhang Q.-Z., Zhao K.-Q., Wu Y., Li X.-H., Yang C., Guo L.-M. 5-aminolevulinic acid-mediated photodynamic therapy and its strain-dependent combined effect with antibiotics on Staphylococcus aureus biofilm. PLoS ONE, 2017, vol. 12, no. 3, article no. e0174627. https://doi.org/10.1371/journal.pone.0174627
  20. Gulías Ò., McKenzie G., Bayó M., Agut M., Nonell S. Effective Photodynamic Inactivation of 26 Escherichia coli Strains with Different Antibiotic Susceptibility Profiles: A Planktonic and Biofilm Study. Antibiotics, 2020, vol. 9, no. 3, article no. 98. https://doi.org/10.3390/antibiotics9030098
  21. Li G., Lai Z., Shan A. Advances of Antimicrobial Peptide-Based Biomaterials for the Treatment of Bacterial Infections. Adv. Sci., 2021, vol. 10, article no. 2206602. https://doi.org/10.1002/advs.202206602
  22. Gyulkhandanyan A. G., Paronyan M. H., Gyulkhandanyan A. G., Ghazaryan K. R., Parkhats M. V., Dzhagarov B. M., Korchenova M. V., Lazareva E. N., Tuchina E. S., Gyulkhandanyan G. V., Tuchin V. V. Meso-substituted cationic 3-and 4-N-Pyridylporphyrins and their Zn(II) derivatives for antibacterial photodynamic therapy. J. Innov. Opt. Health Sci., 2022, vol. 15, article no. 2142007. https://doi.org/10.1142/S1793545821420074
  23. Tovmasyan A. G., Babayan N. S., Sahakyan L. A., Shahkhatuni A. G., Gasparyan G. H., Aroutiounian R. M., Ghazaryan R. K. Synthesis and in vitro anticancer activity of water-soluble cationic pyridylporphyrins and their metallocomplexes. J. of Porphyrins and Phthalocyanines, 2008, vol. 12, no. 10, pp. 1100–1110. https://doi.org/10.1142/s1088424608000467
  24. Gyulkhandanyan G. V., Sargsyan A. A., Paronyan M. H., Sheyranyan M. A. Absorption and fluorescence spectra parameters of cationic porphyrins for photodynamic therapy of tumors. Biolog. Journal of Armenia, 2020, vol. 3, no. 72, pp. 72–76.
  25. Krasnikova L. V., Gunkova P. I. Obschaya i pischevaya mikrobiologya [General and food microbiology]. St. Petersburg, University ITMO, 2016. 135 p.
  26. Bukharin O. V., Sgibnev A. V., Cherkasov S. V. Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences. Sposob vyyavleniya u bakteriy ingibitorov katalazy mikroorganismov [Method for identifying microorganism catalase inhibitors in bacteria]. Patent RF no. 2180353, 2002 (in Russian).
  27. Gashev S. N., Betlyaeva F. H., Lupinos M. Yu. Matematicheskie metody v biologii: analis biologicheskikh dannykh v sisteme Statistica [Mathematical methods in biology: Analysis of biological data in the Statistica system]. Мoscow, Yurayt, 2017. 208 p.
  28. Balhaddad A. A., AlQranei M. S., Ibrahim M. S., Weir M. D., Martinho F. C., Xu H. H. K., Melo M. A. S. Light Energy Dose and Photosensitizer Concentration Are Determinants of Effective Photo-Killing against Caries-Related Biofilms. Int. J. Mol. Sci., 2020, vol. 21, no. 20, article no. 7612. https://doi.org/10.3390/ijms21207612
  29. Zada L., Anwar S., Imtiaz S. In vitro study: Methylene blue-based antibacterial photodynamic inactivation of Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 2024, vol. 108, article no. 169. https://doi.org/10.1007/s00253-024-13009-5
  30. Fujii J., Soma Y., Matsuda Y. Biological Action of Singlet Molecular Oxygen from the Standpoint of Cell Signaling, Injury and Death. Molecules, 2023, vol. 28, article no. 4085. https://doi.org/10.3390/molecules28104085
  31. Demidova T. N., Hamblin M. R. Effect of Cell-Photosensitizer Binding and Cell Density on Microbial Photoinactivation. Antimicrobial Agents and Chemotherapy, 2005, vol. 49, pp. 2329–2335. https://doi.org/10.1128/aac.49.6.2329-2335.2005
  32. Jori G., Fabris C., Soncin M., Ferro S., Coppellotti O., Dei D., Roncucci G. Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications. Lasers in Surgery and Medicine, 2006, vol. 38, pp. 468–481.
  33. Gapeeva A. B., Scherbatyuk T. G. Modification of hypoxic conditions during photodynamic therapy. Biological Membranes, 2020, vol. 37, no. 3, pp. 163–174.
  34. Bogdanov A. A., Klimenko V. V., Bogdanov An. A., Verlov N. A., Moiseenko V. M. Direct photogeneration of singlet oxygen in biological media for cancer therapy. Practical Oncology, 2023, vol. 24, no. 1, pp. 39–47.
  35. Peskova N. N., Brilkina A. A., Gorokhova A. A., Shilyagina N. Y., Kutova O. M., Nerush A. S., Balalaeva I. V. The localization of the photosensitizer determines the dynamics of the secondary production of hydrogen peroxide in cell cytoplasm and mitochondria. J. of Photochemistry and Photobiology B, 2021, vol. 219, article no. 112208. https://doi.org/10.1016/j.jphotobiol.2021.112208
  36. Feuerstein O., Moreinos D., Steinberg D. Synergic antibacterial effect between visible light and hydrogen peroxide on Streptococcus mutans. J. Antimicrob. Chemother., 2006, vol. 57, pp. 872–876. https://doi.org/10.1093/jac/dkl070
  37. Donegan N. P., Manna A. C., Tseng C. W., Liu G. Y., Cheung A. L. CspA regulation of Staphylococcus aureus carotenoid levels and σ B activity is controlled by YjbH and Spx. Molecular Microbiology, 2019, vol. 112, no. 2, pp. 532–551. https://doi.org/10.1111/mmi.14273
  38. Seel W., Baust D., Sons D., Albers M., Etzbach L., Fuss J., Lipski A. Carotenoids are used as regulators for membrane fluidity by Staphylococcus xylosus. Scientific Reports, 2020, vol. 10, pp. 328–341. https://doi.org/10.1038/s41598-019-57006-5
  39. Manrique-Moreno M., Jemioіa-Rzeminska M., Múnera-Jaramillo J., López G.-D., Suesca E., Leidy C., Strzaіka K. Staphylococcus aureus Carotenoids Modulate the Thermotropic Phase Behavior of Model Systems That Mimic Its Membrane Composition. Membranes, 2022, vol. 12, pp. 945–954. https://doi.org/10.3390/membranes12100945
  40. Stadtman E. R., Levine R. L. Free Radical-Mediated Oxidation of Free Amino Acids and Amino Acid Residues in Proteins. Amino Acids, 2003, vol. 25, pp. 207–218. https://doi.org/10.1007/s00726-003-0011-2
  41. Tuchina E. S., Permyakova N. F., Tuchin V. V. The effect of LED-light action on microbial colony forming ability of several species of staphylococcus. Proc. SPIE 6535, Saratov Fall Meeting 2006: Optical Technologies in Biophysics and Medicine VIII, 2007, vol. 6535, pp. 65351X1–7. https://doi.org/10.1117/12.741013
  42. Hessling M., Spellerberg B., Hoenes K. Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelengths – a review on existing data. FEMS Microbiol. Lett., 2017, vol. 364, no. 2, pp. 270–281. https://doi.org/10.3389/fmed.2021.642609
  43. Plavskii V. Y., Mikulich A. V., Tretyakova A. I., Leusenka I. A., Plavskaya L. G., Kazyuchits O. A., Dobysh I. I., Krasnenkova T. P. Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells. J. Photochem. Photobiol. B, 2018, vol. 183, pp. 172–183. https://doi.org/10.1016/j.jphotobiol.2018.04.021
  44. Huang S., Lin S., Qin H., Jiang H., Liu M. The Parameters Affecting Antimicrobial Efficiency of Antimicrobial Blue Light Therapy: A Review and Prospect. Biomedicines, 2023, vol. 11, no. 4, article no. 1197. https://doi.org/10.3390/biomedicines11041197
  45. Mkrtchyan L., Seferyan T., Parkhats M., Lepeshkevich S., Dzhagarov B., Shmavonyan G., Tuchina E., Tuchin V., Gyulkhandanyan G. The role of singlet oxygen and hydroxyl radical in the photobleaching of meso-substituted cationic pyridyl porphyrins in the presence of folic acid. J. of Innovative Optical Health Sciences, 2024, vol. 1, pp. 1–20. https://doi.org/10.1142/S1793545824400029
  46. Khatoon Z., McTiernan C. D., Suuronen E. J., Mah T.-F., Alarcon E. I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon, 2018, vol. 4, no. 12, article no. e01067. https://doi.org/10.1016/j.heliyon.2018.e01067

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies