Tight-binding implementation of the quantum kinetic equation for graphene

Cover Page

Cite item

Full Text

Abstract

Background and Objectives: Progress in the development of pulsed radiation sources with high energy density makes it possible to study the nonlinear response of condensed matter to the disturbing influence of high-intensity electromagnetic fields. To understand the processes occurring in this case, adequate models are needed that qualitatively and quantitatively reproduce the characteristics of the materials under study. In this area, graphene is considered one of the most promising materials due to the specificity of its band structure. The purpose of the work is to present and test a new model based on the quantum kinetic equation, free from restrictions on such parameters as the frequency and strength of the electric field of the disturbing influence. Materials and Method: The approach used in the work is based on the quantum kinetic equation for the distribution function of charge carriers in the state space. It makes it possible, in the one-electron approximation, to nonperturbatively reproduce the ultrafast dynamics of carriers in an external classical electric field. The system under consideration is specified by the electron dispersion law. The approach was developed and implemented for the pseudo-relativistic approximation of massless fermions, successfully used in describing the features of graphene. However, by its definition, this approximation quite accurately reproduces the real dispersion law only in the low-energy region in the vicinity of the Dirac points. Therefore, the direct use of this version of the model to describe processes in which electronic states with high excitation energies are known to participate raises questions about the accuracy of the results obtained. The problem can be resolved by moving to an exact definition of the dispersion law through the parameters of the tight-binding model of nearest neighbors in the crystal lattice of the graphene. The presented work proposes an implementation option for such a procedure and verifies the results obtained. A generalization of the formalism for a two-level system with a massless Hamiltonian of general form is used, which universally defines the explicit form of the quantum kinetic equation and expressions for macroscopic observable parameters. Results: A computational model based on the exact tight-binding model Hamiltonian has been determined, which strictly takes into account the real law of graphene dispersion in reciprocal space. The new model has been verified. For this purpose, the results of its use are compared with the results of a similar model based on the massless fermion approximation. Under conditions of limiting the parameters of the perturbing influence, ensuring the generation of excited states with only low energies in the immediate vicinity of the Dirac points, an exact coincidence has been demonstrated both at the stage of determining the values of the distribution function and for the observed parameters. It has been shown that going beyond the applicability limits of the massless fermion approximation is accompanied by the appearance of qualitative and quantitative differences in the results obtained. Conclusion: The results of the work provide new opportunities for studying the behavior of graphene under extreme conditions of strong high-frequency fields, modeling and searching for new nonlinear effects, and accurately reproducing the ultrafast quantum dynamics of its electrons for states with high energy values.

About the authors

Anatolii Dmitrievich Panferov

Saratov State University

ORCID iD: 0000-0003-2332-0982
Scopus Author ID: 24384266800
ResearcherId: AAO-7735-2021
410012, Russia, Saratov, Astrakhanskaya street, 83

Ilya A. Shcherbakov

Saratov State University

ORCID iD: 0009-0003-0599-3099
410012, Russia, Saratov, Astrakhanskaya street, 83

References

  1. Higuchi T., Heide Ch., Ullmann K., Weber H. B., Hommelhof P. Light-field-driven currents in grapheme // Nature. 2017. Vol. 550. P. 224–228. https://doi.org/10.1038/nature23900
  2. Aryasetiawan F., Gunnarsson O. The GW method // Rep. Prog. Phys. 1998. Vol. 61. P. 237. https://doi.org/10.1088/0034-4885/61/3/002
  3. Golze D., Dvorak M., Rinke P. The GW Compendium: A Practical Guide to Theoretical Photoemission Spectroscopy // Frontiers in Chemistry. 2019. Vol. 7. Article number 377. https://doi.org/10.3389/fchem.2019.00377
  4. Provorse M. R., Isborn Ch. M. Electron Dynamics with Real-Time Time-Dependent Density Functional Theory // International Journal of Quantum Chemistry. 2016. Vol. 116 P. 739–749. https://doi.org/10.1002/qua.25096
  5. Mocci P., Malloci G., Bosin A., Cappellini G. Time-Dependent Density Functional Theory Investigation on the Electronic and Optical Properties of Poly-C,Si,Ge-acenes // ASC Omega. 2020. Vol. 5. P. 16654–16663. https://doi.org/10.1021/acsomega.0c01516
  6. Wilhelm J., Grössing P., Seith A., Crewse J., Nitsch M., Weigl L., Schmid Chr., Evers F. Semiconductor Bloch-equations formalism: Derivation and application to high-harmonic generation from Dirac fermions // Phys. Rev. B. 2021. Vol. 103. Article number 125419. https://dx.doi.org/10.1103/PhysRevB.103.125419
  7. Ornigotti M., Carvalho D. N., Biancalana F. Nonlinear optics in graphene: Theoretical background and recent advances // La Rivista del Nuovo Cimento. 2023. Vol. 46. P. 295–380. https://doi.org/10.1007/s40766-023-00043-8
  8. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A. Two-dimensional gas of massless Dirac fermions in graphene // Nature. 2005. Vol. 438. P. 197–200. https://doi.org/10.1038/nature04233
  9. Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K. The electronic properties of graphene // Rev. Mod. Phys. 2009. Vol. 81. P. 109–162. https://doi.org/10.1103/RevModPhys.81.109
  10. Katsnelson M. I. The Physics of Graphene. Cambridge University Press, 2020. 425 p. https://doi.org/10.1017/9781108617567
  11. Гриб A. A., Мамаев С. Г., Мостепаненко В. М. Вакуумные квантовые эффекты в сильных полях. М. : Энергоатомиздат, 1988. 288 с.
  12. Bialynicky-Birula I., Gornicki P., Rafelski J. Phase space structure of the Dirac vacuum // Phys. Rev. D. 1991. Vol. 44. P. 1825–1835. https://doi.org/10.1103/PhysRevD.44.1825
  13. Schmidt S. M., Blaschke D., Röpke G., Smolyansky S. A., Prozorkevich A. V., Toneev V. D. A Quantum kinetic equation for particle production in the Schwinger mechanism // Int. J. Mod. Phys. E. 1998. Vol. 7. P. 709–718. https://doi.org/10.1142/S0218301398000403
  14. Blaschke D. B., Prozorkevich A. V., Röpke G., Roberts C. D., Schmidt S. M., Shkirmanov D. S., Smolyansky S. A. Dynamical Schwinger effect and high-intensity lasers. Realising nonperturbative QED // Eur. Phys. J. D. 2009. Vol. 55. P. 341–358. https://doi.org/10.1140/epjd/e2009-00156-y
  15. Panferov A., Smolyansky S., Blaschke D., Gevorgyan N. Comparing two different descriptions of the I–V characteristic of graphene: Theory and experiment // EPJ Web Conf. 2019. Vol. 204. Article number 06008. https://doi.org/10.1051/epjconf/201920406008
  16. Smolyansky S. A., Panferov A. D., Blaschke D. B., Gevorgyan N. T. Nonperturbative kinetic description of electron-hole excitations in graphene in a time dependent electric field of arbitrary polarization Particles. 2019. Vol. 2. P. 208–230. https://doi.org/10.3390/ particles2020015
  17. Smolyansky S. A., Blaschke D. B., Dmitriev V. V., Panferov A. D., Gevorgyan N. T. Kinetic equation approach to graphene in strong external fields // Particles. 2020. Vol. 3. P. 456–476. https://doi.org/10.3390/particles3020032
  18. Панферов А. Д., Новиков Н. А. Характеристики индуцированного излучения в условиях действия на графен коротких высокочастотных импульсов // Известия Саратовского университета. Новая серия. Серия : Физика. 2023. Т. 23, вып. 3. С. 254–264. https://doi.org/10.18500/1817-3020-2023-23-3-254-264
  19. Церюпа В. А., Чурочкин Д. В., Дмитриев В. В., Смолянский С. А. Излучение в графене: кинетический подход // Журнал технической физики. 2024. Т. 94, вып. 3. С. 351–357. https://doi.org/10.61011/JTF.2024.03.57371.1-24
  20. Wallace P. R. The Band Theory of Graphite // Phys. Rev. 1947. Vol. 71. P. 622–634. https://doi.org/10.1103/PhysRev.71.622
  21. Martin P. C., Schwinger J. Theory of many-particle systems. I // Phys. Rev. 1959. Vol. 115. P. 1342–1373. https://doi.org/10.1103/PhysRev.115.1342
  22. Ахиезер A. И., Пелетминский С. В. Методы статистической физики. М. : Наука, 1977. 367 с.
  23. Sipe J. E., Shkrebtii A. I. Second-order optical response in semiconductors // Phys. Rev. B. 2000. Vol. 61. P. 5337–5352. https://dx.doi.org/10.1103/PhysRevB.61.5337
  24. Ishikawa K. L. Nonlinear optical response of graphene in time domain // Phys. Rev. B. 2010. Vol. 82. Article number 201402. https://doi.org/10.1103/PhysRevB.82. 201402
  25. Yoshikawa N., Tamaya T., Tanaka K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation // Science. 2017. Vol. 356. P. 736–738. https://doi.org/10.1126/science.aam8861
  26. Sato Sh. A., Hirori H., Sanari Y., Kanemitsu Y., Rubio A. High-order harmonic generation in graphene: Nonlinear coupling of intraband and interband transitions // Phys. Rev. B. 2021. Vol. 103. Article number. L041408. https://dx.doi.org/10.1103/PhysRevB.103.L041408
  27. Reich S., Maultzsch J., Thomsen C. Tight-binding description of grapheme // Phys. Rev. B. 2002. Vol. 669. Article number 035412. https://dx.doi.org/10.1103/PhysRevB.66.035412
  28. Панферов А. Д., Поснова Н. В., Ульянова А. А. Моделирование поведения двухуровневой квантовой системы с использованием масштабируемых регулярных сеток // Программные системы: теория и приложения. 2023. Т. 14, вып. 2. С. 27–47. https://doi.org/10.25209/2079-3316-2023-14-2-27-47
  29. Gil-Villalba A., Meyer R., Giust R., Rapp L., Billet C., Courvoisier F. Single shot femtosecond laser nanoablation of CVD monolayer graphene // Scientific Reports. 2018. Vol. 8. Article number 14601. https://dx.doi.org/10.1038/s41598-018-32957-3
  30. Weitz T., Heide Chr., Hommelhoff P. Strong-Field Bloch Electron interferometry for Band Structure Retrieval // arXiv:2309.16313v1. https:// doi. org/10.48550/arXiv.2309.16313

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies