Degradation of conductivity of low-dimensional nanostructured semiconductor layers under long-term dc current flow

封面

如何引用文章

全文:

详细

Background and Objectives: Electrically conductive layers of densely packed semiconductor nanoparticles are a promising material platform for creating, in particular, multisensor chemoresistive systems. A significant disadvantage of multielement chemoresistive sensors of this type is the long-term instability of the parameters of individual elements and large values of response and relaxation times to the initial state. Such a process can be considered as a transition “semiconductor – insulator” in dispersed disordered systems, and the dynamics of the transition can be described in the framework of the percolation theory. The aim of this work was experimental studies and statistical modeling of the effect of degradation of ohmic conductivity of low-dimensional layers of densely packed indium oxide (In2O3) nanoparticles under long-term DC current flow. Dispersed nanostructured layers of indium oxide were chosen as an object of study due to the specific electrophysical properties of this indirect-gap n-type semiconductor. Materials and Methods: Experimental studies of the effect of degradation of ohmic conductivity of dispersed semiconductor structures under long-term exposure to direct current were carried out using specially prepared samples consisting of densely packed indium oxide nanoparticles (In2O3). The effect of structure thickness on the percolation threshold as well as the critical index of the conductivity function was numerically investigated. A cubic resistor network was considered for numerical analysis of the conductivity of a two-phase percolation structure. The network was uniformly and randomly filled with conducting and insulating nodes. Results: One of the main observed features of electron transfer in bridge disordered ensembles of nanoparticles of the studied systems is the achievement of percolation threshold at long-term exposure to direct current and extremely low rate of recovery of deteriorated conductivity after removal of exposure. The established value of the critical conductivity index for the studied structures has an intermediate value between theoretical estimates for three-dimensional and two-dimensional percolation systems, which allows us to consider the studied structures as transitional between two-dimensional and three-dimensional systems. Conclusion: The obtained results can be used as a physical basis for the development of new approaches to the creation of thin structures with limited conductivity.

作者简介

Leonid Kochkurov

Yuri Gagarin State Technical University of Saratov

77, Politechnicheskaya str., Saratov, 410054, Russia

Sergei Volchkov

Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences

ORCID iD: 0000-0002-3928-8836
Scopus 作者 ID: 57202159944
Researcher ID: B-7770-2018
38, Zelenaya Str., Saratov 410019, Russia

Mikhail Vasilkov

Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences

ORCID iD: 0000-0003-1579-1194
Scopus 作者 ID: 56451042200
Researcher ID: M-6825-2016
38, Zelenaya Str., Saratov 410019, Russia

Ilya Plugin

Yuri Gagarin State Technical University of Saratov

ORCID iD: 0000-0002-1066-1596
Scopus 作者 ID: 57200115169
Researcher ID: E-8700-2019
77, Politechnicheskaya str., Saratov, 410054, Russia

Angelika Klimova

Yuri Gagarin State Technical University of Saratov

ORCID iD: 0009-0000-7237-2979
77, Politechnicheskaya str., Saratov, 410054, Russia

Dmitry Zimnyakov

Yuri Gagarin State Technical University of Saratov

77, Politechnicheskaya str., Saratov, 410054, Russia

参考

  1. Witkiewicz Z., Jasek K., Grabka M. Semiconductor gas sensors for detecting chemical warfare agents and their simulants. Sensors, 2023, vol. 23, iss. 6, article no. 3272. https://doi.org/10.3390/s23063272
  2. Qin Q., Olimov D., Yin L. Semiconductor-type gas sensors based on γ-Fe2O3 nanoparticles and its derivatives in conjunction with SnO2 and graphene. Chemosensors, 2022, vol. 10, iss. 7, article no. 267. https://doi.org/10.3390/chemosensors10070267
  3. Sharma A., Ahmed A., Singh A., Oruganti S. K., Khosla A., Arya S. Review–Recent advances in tin oxide nanomaterials as electrochemical/chemiresistive sensors. J. Electrochem. Soc., 2021, vol. 168, iss. 2, pp. 027505. https://doi.org/10.1149/1945-7111/abdee8
  4. Chen N., Deng D., Li Y., Xing X., Liu X., Xiao X., Wang Y. The xylene sensing performance of WO3 decorated anatase TiO2 nanoparticles as a sensing material for a gas sensor at a low operating temperature. RSC Adv, 2016, vol. 6, iss. 55, pp. 49692–49701. https://doi.org/C6RA09195D
  5. Feiyu D., Wang Y. Transition metal oxide nanostructures: Premeditated fabrication and applications in electronic and photonic devices. J. Mater. Sci., 2018, vol. 53, iss. 6, pp. 4334–4359. https://doi.org/10.1007/s10853-017-1862-3
  6. Sudarshan S., Das S., Ray S. K. Progress in group-IV semiconductor nanowires based photonic devices. Appl. Phys. A, 2023, vol. 129, iss. 3, article no. 216. https://doi.org/10.1007/s00339-023-06483-7
  7. Baldini E., Palmieri T., Pomarico E. Auböck G., Chergui M. Clocking the ultrafast electron cooling in anatase titanium dioxide nanoparticles. ACS Photonics, 2018, vol. 5, iss. 4, pp. 1241–1249. https://doi.org/10.1021/acsphotonics.7b00945
  8. Song Y., You K., Chen Y., Zhao J., Jiang X., Ge Y., Wang Y., Zheng J., Xing C., Zhang H. Lead monoxide: A promising two-dimensional layered material for applications in nonlinear photonics in the infrared band. Nanoscale, 2019, vol. 11, iss. 26, pp. 12595–12602. https://doi.org/10.1039/c9nr03167g
  9. Li J., Chen C., Liu S., Lu J., Goh W. P., Fang H., Qiu Z., Tian B., Chen Z., Yao C., Liu W., Yan H., Yu Y., Wang D., Wang Y., Lin M., Su Ch., Lu J. Ultrafast electrochemical expansion of black phosphorus toward high-yield synthesis of few-layer phosphorene. Chem. Mater., 2018, vol. 30, iss. 8, pp. 2742–2749. https://doi.org/10.1021/acs.chemmater.8b00521
  10. Terna A. D., Elemike E. E., Mbonu J. I., Osafile O. E., Ezeani R. O. The future of semiconductors nanoparticles: Synthesis, properties and applications. Mater. Sci. Eng. B, 2021, vol. 272, iss. 2, pp. 115363. https://doi.org/10.1016/j.mseb.2021.115363
  11. Collins G., Lonergan A., McNulty D., Glynn C., Buckley D., Hu C., O’Dwyer C. Semiconducting metal oxide photonic crystal plasmonic photocatalysts. Adv. Mater. Interfaces, 2020, vol. 7, iss. 2, pp. 1901805. https://doi.org/10.1002/admi.201901805
  12. Morris A. J., Monserrat B. Optical absorption driven by dynamical symmetry breaking in indium oxide. Phys. Rev. B, 2018, vol. 98, iss. 16, pp. 161203(R). https://doi.org/10.1103/PhysRevB.98.161203
  13. Schmidt-Grund R., Krauß H., Kranert C., Bonholzer M., Grundmann M. Temperature dependence of the dielectric function in the spectral range (0.5–8.5) eV of an In2O3 thin film. Appl. Phys. Lett., 2014, vol. 105, iss. 11, pp. 111906. https://doi.org/10.1063/1.4896321
  14. Zimnyakov D. A., Volchkov S. S., Vasilkov M. Y., Plugin I. A., Varezhnikov A. S., Gorshkov N. V., Ushakov A. V., Tokarev A. S., Tsypin D. V., Vereshagin D. A. Semiconductor-to-Insulator Transition in Inter-Electrode Bridge-like Ensembles of Anatase Nanoparticles under a Long-Term Action of the Direct Current. Nanomaterials, 2023, vol. 13, iss. 9, article no. 1490. https://doi.org/10.3390/nano13091490
  15. Gallyamov S. R., Mel’chukov S. A. Percolation model of conductivity of two-phase lattice: Theory and computer experiment. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 4, pp. 112–122 (in Russian). https://doi.org/10.20537/vm100413
  16. Gingold D. B., Lobb C. J. Percolative conduction in three dimensions. Phys. Rev. B, 1990, vol. 42, iss. 13, pp. 8220–8224. https://doi.org/10.1103/PhysRevB.42.8220
  17. Normand J.-M., Herrmann H. J. Precise determination of the conductivity exponent of 3D percolation using “Percola”. International Journal of Modern Phys., 1996, vol. 6, iss. 6, pp. 813–817. https://doi.org/10.48550/arXiv.cond-mat/9602081
  18. Clerc J.-M., Podolskiy V. A., Sarychev A. K. Precise determination of the conductivity exponent of 3D percolation using exact numerical renormalization. The European Phys. J. B, 2000, vol. 15, iss. 3, pp. 507–516. https://doi.org/10.1007/s100510051153
  19. Kozlov B., Laguës M. Universality of 3D percolation exponents and first-order corrections to scaling for conductivity exponents. Physica A, 2010, vol. 389, iss. 23, pp. 5339–5346. https://doi.org/10.1016/j.physa.2010.08.002
  20. Zekri L., Kaiss A., Clerc J.-P., Porterie B., Nouredine Z. 2D-to-3D percolation crossover of metal–insulator composites. Phys. Lett. A, 2011, vol. 375, iss. 3, pp. 346–351. https://doi.org/10.1016/j.physleta.2010.11.043

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».