Optical spectroscopy of nanoporous membranes based on anodic alumina in an ammonia gas flow

Cover Page

Cite item

Full Text

Abstract

Background and Objectives: Membranes in the form of highly ordered nanostructures of porous anodic aluminum oxide (PAAO) with adjustable pore properties were obtained by electrochemical anodizing. PAAO nanostructures were prepared in an oxalic acid electrolyte at a direct current electrochemical potential of 30–60 V. The ready-made nanoporous membranes were modified with thin silver films 1.8, 3.6 and 5.4 nm thick. The study of the membrane surface by scanning electron microscopy has shown that nanoporous membranes have hexagonally arranged and highly ordered arrays of pores with a diameter of (30±4) nm and a packing density of about 1.8 · 10¹⁰ cm–2. Optical interference spectra of PAAO were recorded in the wavelength range of 300–900 nm. The optical properties of nanoporous membranes with a free and silver-modified surface changed depending on the time of interaction of the membrane surface with the ammonia gas flow, which led to changes in the interference pattern and, in turn, to changes in the effective optical thickness (EOT) of the membranes. Features of the influence of the membrane surfacemodified with silver onthe shape and sensitivity ofthe optical signal ofthe sensor have been revealed. The aim ofthis work was to experimentally study the temporal characteristics of the optical spectral response of nanoporous anodic alumina membranes with a free pore surface and modified with thin silver films in an ammonia gas flow. Materials and Methods: The thickness of the PAAO membrane, determined profilometrically, did not exceed 1.0 µm. The average inner diameter of Al2O3 nanopores is (30±4) nm. The silver films were deposited by magnetron sputtering at direct current. Changes in the effective optical thickness are used to quantify changes in the optical properties of the membrane. Changes in the effective optical thickness will be mainly determined by the effective refractive index of the PAAO-Ag molecular film of the adsorbed gas structure. The effective refractive index of the membrane was determined from the measured position of the interference maxima and the given membrane thickness. Results: Association processes have been considered, i.e. binding of analyte molecules to the surface of the PAAO nanoporous membrane. A stream of gaseous ammonia was chosen as the analyte. According to the Langmuir isotherm model, the sensor response during real-time measurements should follow a negative exponential trend. It has been shown that the shape of the sensor’s optical signal qualitatively repeats the shape of the theoretical curve of real-time optical probing in the regions of molecular binding and equilibrium. The molecular association time of the free surface of the PAAO nanoporous membrane was 7 ± 1 minutes. The deposition of thin silver films on the surface of a nanoporous PAAO membrane leads to a change in the shape of the optical signal and a decrease in its magnitude. Conclusion: On the basis of the synthesized nanoporous PAAO membranes with a free surface and modified with ultrathin silver films, experimental studies of the effect of ammonia flow on multibeam light interference in such membranes have been carried out. It has been found that the surface roughness and size effect of the silver film thickness have a significant effect on the transmission spectra and sensory sensitivity of the membranes. It has been shown that the largest relative change in the refractive index of the membrane in an ammonia flow is observed for the thinnest silver film 1.8 nm thick. It has been noted that there is a threshold value of the thickness of a silver film deposited on the surface of a nanoporous PAAО membrane, above which the use of such films in optical sensors with the mechanism of multipath light interference is not advisable, and the use of a different mechanism is required, for example, the mechanism of localized surface plasmon resonance.

About the authors

Ilya Nicolaevich Mikhailov

Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences

ORCID iD: 0000-0003-4231-0130
38, Zelenaya Str., Saratov 410019, Russia

Yuri Vasil'evich Nikulin

Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences

38, Zelenaya Str., Saratov 410019, Russia

Sergei Sergeevich Volchkov

Yuri Gagarin State Technical University of Saratov

ORCID iD: 0000-0002-3928-8836
Scopus Author ID: 57202159944
ResearcherId: B-7770-2018
77, Politechnicheskaya str., Saratov, 410054, Russia

Mikhail Yu. Vasilkov

Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences

ORCID iD: 0000-0003-1579-1194
Scopus Author ID: 56451042200
ResearcherId: M-6825-2016
38, Zelenaya Str., Saratov 410019, Russia

Natalya A. Malofeeva

Yuri Gagarin State Technical University of Saratov

77, Politechnicheskaya str., Saratov, 410054, Russia

Igor D. Kosobudsky

Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences

Scopus Author ID: 6603237479
38, Zelenaya Str., Saratov 410019, Russia

Nickolai Mikhailovich Ushakov

Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences

ORCID iD: 0000-0003-1647-2726
Scopus Author ID: 55406725200
ResearcherId: A-6080-2014
38, Zelenaya Str., Saratov 410019, Russia

References

  1. Ferré-Borrull J., Pallarès J., Macías G., Marsal L. F. Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications // Materials. 2014. Vol. 7. P. 5225–5253. https://doi.org/10.3390/ma7075225
  2. Shi L., Endres T., Jeffries J. B., Dreier T., Schulz C. A Compact Fiber-Coupled NIR/MIR Laser Absorption Instrument for the Simultaneous Measurement of Gas-Phase Temperature and CO, CO2, and H2O Concentration // Sensors. 2022. Vol. 22, iss. 1. P. 1286–1308. https://doi.org/10.3390/s22031286
  3. Tang Y., Guo J., Chen Y., Huang J. Optical Interferometric Force Sensor Based on a Buckled Beam // IEEE Sensors Journal. 2022. Vol. 22, № 2. P. 1301–1308.
  4. Васильков М. Ю., Михайлов И. Н., Исаев А. Е., Сафошкин Д. З., Кособудский И. Д., Ушаков Н. М. Синтез и изучение композиционного материала на основе пористого анодного оксида алюминия, модифицированного нанонитями серебра // РЭНСИТ. 2021. Т. 13, № 1. С. 39–44. https://doi.org/10.17725/rensit.2021.13.039
  5. Fedorov F. S., Goldt A. E., Zamansky K., Vasilkov M. Yu., Gaev A., Lantsberg A. V., Zaytsev V., Aslyamov T., Nasibulin A. G. Bi-hierarchical porous Pt microspheres grown on Ti wire with TiO2 nanotubes layer for selective alcohol sensing // Oxford Open Energy. 2022. Vol. 1. Article number oiac004. https://doi.org/10.1093/ooenergy/oiac004
  6. Srimathi I. R., Pung A. J., Li Y., Rumpf R. C., Johnson E. G. Fabrication of metal-oxide nano-hairs for effective index optical elements // Optics Express. 2013. Vol. 21, № 16. P. 18733–18741. https://doi.org/10.1364/OE.21.018733
  7. Memon S. F., Wang R., Strunz B., Chowdhry B. S., Pembroke J. T., Lewis E. A Review of Optical Fibre Ethanol Sensors: Current State and Future Prospects // Sensors. 2022. Vol. 22, № 3. Article number 950. https://doi.org/10.3390/s22030950
  8. Santos A., Kumeria T., Losic D. Nanoporous anodic aluminum oxide for chemical sensing and biosensors // TrAC – Trends in Analytical Chemistry. 2013. Vol. 44. P. 25–38. https://dx.doi.org/10.1016/j.trac.2012.11.007
  9. Duan W., Yan F., Wang Y., Zhang H., Ma L., Wen D., Wang W., Sheng G., Wang Q. A Laser-Based Multipass Absorption Sensor for Sub-ppm Detection of Methane, Acetylene and Ammonia // Sensors. 2022. Vol. 22. P. 556–570. https://doi.org/10.3390/s22020556
  10. Gauglitz G., Krause-Bonte J. Spectral Interference Refractometry by Diode Array Spectrometry // Anal. Chem. 1988. Vol. 60. P. 2609–2612.
  11. Kumeria T., Losic D. Reflective interferometric gas sensing using nanoporous anodic aluminium oxide (AAO) // Phys. Stat. Sol. Rapid Res. Lett. 2011. Vol. 5, iss. 10–11. P. 406–408. https://doi.org/10.1002/pssr.201105425
  12. Bellancini M., Cercenelli L., Severi S., Comai G., Marcell E. Development of a CO2 Sensor for Extracorporeal Life Support Applications // Sensors. 2020. Vol. 20. P. 3613–3631. https://doi.org/10.3390/s20133613
  13. D’Amato F., Viciani S., Montori A., Barucci M., Morreale C., Bertagna S., Migliavacca G. Spectroscopic Techniques versus Pitot Tube for the Measurement of Flow Velocity in Narrow Ducts // Sensors. 2020. Vol. 20. P. 7349–7368. https://doi.org/10.3390/s20247349
  14. Tao J., Zhang Q., Xiao Y., Li X., Yao P., Pang W., Zhang H., Duan X., Zhang D., Liu J. A Microfluidic-Based Fabry-Pérot Gas Sensor // Micromachines. 2016. Vol. 7. P. 36–46. https://doi.org/10.3390/mi7030036
  15. Chang T.-C., Sun A. Y., Huang Yu.-C., Wang Ch.-H., Wang Sh.-Ch., Chau L.-K. Integration of Power-Free and Self-Contained Microfluidic Chip with Fiber Optic Particle Plasmon Resonance Aptasensor for Rapid Detection of SARS-CoV-2 // Nucleocapsid Protein. Biosensors. 2022. Vol. 12, № 10. Article number 785. https://doi.org/10.3390/bios12100785
  16. Evans R. M., Edwards D. A. Receptor heterogeneity in optical biosensors // J. Math. Biol. 2018. Vol. 76. P. 795–816. https://doi.org/10.1007/s00285-017-1158-x
  17. Васильков М. Ю., Михайлов И. Н., Никулин Ю. В., Волчков С. С., Зимняков Д. А., Ушаков Н. М. Спектральные оптические свойства нанокерамических пористых мембран на основе анодного оксида алюминия и покрытия из серебра в парах аммиака // Оптика и спектроскопия. 2022. Т. 130, вып. 2. С. 305–310. https://doi.org/10.21883/OS.2022.02.52000.2244-21
  18. Nielsch K., Choi J., Schwim K., Wehrspohn R. B., Gösele U. Self-ordering regimes of porous alumina: The 10% Porosity Rule // Nano Lett. 2002. Vol. 2. P. 677–680.
  19. Santos A., Balderrama V. S., Alba M., Formentín P., Ferré-Borrull J., Pallarès J., Marsal L. F. Nanoporous Anodic Alumina Barcodes: Toward Smart Optical Biosensors // Adv. Mater. 2012. Vol. 24. P. 1050–1054.
  20. Moiseev S. G. Optical properties of a Maxwell–Garnett composite medium with nonspherical silver inclusions // Russian Physics Journal. 2009. Vol. 52, № 11. P. 1121–1127. https://doi.org/1064-8887/09/5211-1121
  21. Sundararajan Ann., Pericas Pep C., Wiegerink R. J., Lötters J. C. Silicon rich silicon nitride microchannels to determine fluid composition by near infrared absorbance // Proc. of IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS). Tokyo, 2022. P. 676–679. https://doi.org/10.1109/MEMS51670.2022.9699647
  22. Beganovic A., Krzysztof B., Henn R., Huck C. W. Handling of uncertainty due to interference fringe in FT-NIR transmittance spectroscopy – Performance comparison of interference elimination techniques using glucose-water system // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2018. Vol. 197. P. 208–215. https://doi.org/10.1016/j.saa.2018.01.069
  23. Mun K.-S., Alvarez S. D., Choi W.-Y., Sailor M. J. A Stable Optical Interferometric Biosensor Base don TiO2 Nanotube Arrays // ACS Nano. 2010. Vol. 4. P. 2070–2076.
  24. Edwards P., Leatherbarrow R. J. Determination of Association Rate Constants by an Optical Biosensor Using Initial Rate Analysis // Anal. Biochem. 1997. Vol. 246. P. 1–6.
  25. Chang T.-C., Wu C.-C., Wang S.-C., Chau L.-K., Hsieh W.-H. Using A Fiber Optic Particle Plasmon Resonance Biosensor To Determine Kinetic Constants of Antigen – Antibody Binding Reaction // Anal. Chem. 2013. Vol. 85, № 1. P. 245–250. https://doi.org/10.1021/ac302590n
  26. Evans R. M., Edwards D. A. Receptor heterogeneity in optical biosensors // Bulletin of Mathematical Biology. 2018. Vol. 76. P. 795–816. https://doi.org/10.1007/s00285-017-1158-x
  27. Evans R. M., Edwards D. A. Transport Effects on Multiple-Component Reactions in Optical Biosensors // Bull. Math. Biol. 2017. Vol. 79. P. 2215–2241. https://doi.org/10.1007/s11538-017-0327-9
  28. Shalabney A., Abdulhalim I. Sensitivity-enhancement methods for surface plasmon sensors // Laser Photonics Rev. 2011. Vol. 5, № 4. P. 571–606. https://doi.org/10.1002/lpor.201000009
  29. Moiseev S. G. Composite medium with silver nanoparticles as an anti-reflection optical coating // App. Phys. A. 2011. Vol. 103. P. 619–622. https://doi.org/10.1007/s00339-010-6193-z
  30. Maréchal N., Quesnel E., Pauleau Y. Silver thin films deposited by magnetron sputtering // Thin Solid Films. 1994. Vol. 241, iss. 1–2. P. 34–38.
  31. Полонянкин Д. А., Блесман А. И., Постников Д. В. Влияние микроструктуры и шероховатости поверхности на электропроводность тонких пленок из меди и серебра, полученных методом магнетронного распыления // Динамика систем, механизмов и машин. 2017. Т. 5, № 2. С. 204–208. https://doi.org/10.25206/2310-9793-2017-5-2-204-208
  32. Ke Y., Zahid F., Timoshevskii V., Xia K., Gall D., Guo H. Resistivity of thin Cu films with surface roughness // Physical Review B. 2009. Vol. 79. Article number 155406.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies