Luminescent probe method in the study of the interaction of glycated human serum albuminwith non-glycated human serum albumin

Cover Page

Cite item

Full Text

Abstract

Background and Objectives: The development and functioning of all living beings ends with the inevitable aging process, as a result of which the activity of all organs and the body as a whole is suppressed, which leads to imminent death. Protein glycation is considered to be one of the causes of aging. This process takes place throughout life, but it intensifies with age. Protein glycation is a reaction of covalent coupling of free amino groups of proteins and reducing carbohydrates, which proceeds without the participation of enzymes and leads to disruption of protein functions. This process is unregulated, as it occurs without the participation of biological catalysts. As a result of glycation of proteins in humans, inflammatory processes occur in the body and a number of diseases such as heart attack, stroke, atherosclerosis, cataract, glycemia, Alzheimer’s disease, diabetes mellitus, etc. develop. In the tasks of medical diagnostics, methods of monitoring the state of proteins in the human body are necessary. In this regard, the work is devoted to the study of the processes of interaction of human serum albumin globules (HSA) with globules of human glycated serum albumin (gHSA). Materials and Methods: In conducting a study of the spectral-kinetic characteristics of the eosin luminescent probe in solutions of glycated and non-glycated HSA, as well as in a mixture of glycated and non–glycated HSA, an exponential dependence of the second order was used to approximate the dependencies of DF (delayed fluorescence) and PHOS (phosphorescence), and an anisotropy equation was used to assume the formation of the gHSA-HSA complex. Results: It has been found that the intensity and kinetics of quenching of delayed fluorescence and phosphorescence of the eosin fluorescent probe associated with proteins are sensitive to the ratio of glycated and non-glycated proteins in solution. To explain the increase in the intensity and lifetime of eosin phosphorescence during the transition from a solution of HSA to a mixture of HSA and gHSA, it is assumed that the globules of HSA and gHSA form a complex of the composition of gHSA-HSA, as a result of diffusion encounters. The rotational mobility of this complex is much less than the separate globules of HSA and gHSA. The formation of the complex is confirmed by an increase in the anisotropy of delayed fluorescence and phosphorescence of eosin in a mixture of HSA and gHSA. Conclusion: The obtained results of the work can be used to diagnose the presence of a complex of glycated with non-glycated proteins in human blood plasma. 

About the authors

Vyacheslav Ivanovich Kochubey

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

Aleksander Borisovich Pravdin

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

Andrey G. Melnikov

Yuri Gagarin State Technical University of Saratov

77, Politechnicheskaya str., Saratov, 410054, Russia

Denis Andreevich Bykov

Yuri Gagarin State Technical University of Saratov

ORCID iD: 0000-0001-6681-9922
77, Politechnicheskaya str., Saratov, 410054, Russia

Gennady V. Melnikov

Yuri Gagarin State Technical University of Saratov

77, Politechnicheskaya str., Saratov, 410054, Russia

References

  1. Xu J. F., Yang Y. S., Jiang A. Q., Zhu H. L. Detection Methods and Research Progress of Human Serum Albumin // Crit. Rev. Anal. Chem. 2022. Vol. 52, № 1. P. 72–92. https://doi.org/10.1080/10408347.2020.1789835
  2. Waiwinya W., Putnin T., Pimalai D., Chawjiraphan W., Sathirapongsasuti N., Japrung D. Immobilization-Free Electrochemical Sensor Coupled with a Graphene-OxideBased Aptasensor for Glycated Albumin Detection // J. Biosensors. 2021. Vol. 11, iss. 3. Article number 85. https://doi.org/10.3390/bios11030085
  3. Soboleva A., Mavropulo-Stolyarenko G., Karonova T., Thieme D., Hoehenwarter W., Ihling C., Stefanov V., Grishina T., Frolov A. Multiple Glycation Sites in Blood Plasma Proteins as an Integrated Biomarker of Type 2 Diabetes Mellitus // Int. J. Mol. Sci. 2019. Vol. 20, № 9. Article number 2329. https://doi.org/10.3390/ijms20092329
  4. Wang S. H., Wang T. F., Wu C. H., Chen S. H. In-Depth Comparative Characterization of Hemoglobin Glycation in Normal and Diabetic Bloods by LC-MSMS // J. Am. Soc. Mass Spectrom. 2014. Vol. 25, № 5. P. 758–766. https://doi.org/10.1007/s13361-014-0830-2
  5. Wolever T. M., Miller J. B. Sugars and blood glucose control // Am. J. Clin. Nutr. 1995. Vol. 62, iss. 1. P. 212S–221S. https://doi.org/10.1093/ajcn/62.1.212S
  6. Belaya Z. E., Smirnova O. M., Dedov I. I. Role of exercises in health and in diabetes mellitus // Problems of Endocrinology. 2005. Vol. 51, № 2. P. 28–37. https://doi.org/10.14341/probl200551228-37
  7. Porte D., Sherwin R., Baron A., Ellenberg M., Rifkin H. Ellenberg and Rifkin’s Diabetes Mellitus. Theory and Practice // Medicine, Biology. 1992. Vol. 2, № 2. P. 139–140. https://doi.org/10.1097/00019616-199203000-00013
  8. Muijs L. T., Racca R., Wit M., Brouwer A., Wieringa T. H., Vries R., Serné E. H., Raalte D. H., Rutters F., Snoek F. J. Glucose variability and mood in adults with diabetes: A systematic review // Endocrinol Diabetes Metab. 2020. Vol. 4, № 1. Article number edm2.152. https://doi.org/10.1002/edm2.152
  9. Данилова Л. А. Гликированные протеины // Педиатр. 2019. Т. 10, № 5. С. 79–86. https://doi.org/10.17816/PED10579-86
  10. Roohk H. V., Zaidi A. R. A review of glycated albumin as an intermediate glycation index for controlling diabetes // J. Diabetes Sci. Technol. 2008. Vol. 2, № 6. P. 1114–1121. https://doi.org/10.1177/193229680800200620
  11. Guerin-Dubourg A., Catan A., Bourdon E. Structural modifications of human albumin in diabetes // Diabetes Metab. 2012. Vol. 38, № 2. P. 171–178. https://doi.org/10.1016/j.diabet.2011.11.002
  12. Cohen M. Perspective: Measurement of circulating glycated proteins to monitor intermediate term changes in glycaemic control // Eur. J. Clin. Chem. Clin. Biochem. 1992. Vol. 30, № 12. P. 851–859.
  13. Anguizola J., Matsuda R., Barnaby O. S., Hoy K. S., Wa C., DeBolt E., Koke M., Hage D. S. Review: Glycation of human serum albumin // Clin. Chim. Acta. 2013. Vol. 425. P. 64–76. https://doi.org/10.1016/j.cca.2013.07.013
  14. Takahashi S., Uchino H., Shimizu T., Kanazawa A., Tamura Y., Sakai K., Watada H., Hirose T., Kawamori R., Tanaka Y. Comparison of Glycated Albumin (GA) and Glycated Hemoglobin (HbA1c) in Type 2 Diabetic Patients: Usefulness of GA for Evaluation of Shortterm Changes in Glycemic Control // J. Endocrine. 2007. Vol. 54, № 1. P. 139–144 https://doi.org/10.1507/endocrj.K06-103
  15. Welsh K. J., Kirkman M. S., Sacks D. B. Role of Glycated Proteins in the Diagnosis and Management of Diabetes: Research Gaps and Future Directions // Diabetes Care. 2016. Vol. 39. P. 1299–1306. https://doi.org/10.2337/dc15-2727
  16. Спасов А. А., Ращенко А. И. Терапевтический потенциал разрывателей поперечных сшивок гликированных белков // Вестник ВолгГМУ. 2016. Вып. 1, № 57. С. 12–15.
  17. Демченко А. П. Люминесценция и динамика структуры белков / АН УССР, Ин-т биохимии им. А. В. Палладина. Киев : Наук. думка, 1988. 276 с.
  18. Mazhul V. M., Zaitseva E. M., Shcherbin D. G. Intramolecular dynamics and functional activity of proteins // Biophysics. 2000. Vol. 45, № 6. P. 965–989.
  19. Добрецов Г. Е. Флуоресцентные зонды в исследовании клеток, мембран и липопротеинов. М. : Наука, 1989. 277 c. https://elibrary.ru/item.asp?id=25827223
  20. Baranov A. N., Vlasova I. M., Mikrin V. E., Saletskii A. M. Laser correlation spectroscopy of the processes of serum albumin denaturation // Journal of Applied Spectroscopy. 2004. Vol. 71, № 6. P. 911–915. https://doi.org/10.1007/s10812-005-0021-9
  21. Seybold P. G., Gouterman M., Callis J. B. Calorimetric, photometric and lifetime determinations of fluorescence yields of fluorescein dyes // Photochemistry and Photobiology. 1969. Vol. 9, № 3. P. 229–242. https://doi.org/10.1111/j.1751-1097.1969.tb07287.x
  22. Cherry R. J., Cogoli A., Oppliger M., Schneider G., Semenza G. A spectroscopic technique for measuring slow rotational diffusion of macromolecules. 1: Preparation and properties of a triplet probe // Biochemistry. 1976. Vol. 15, № 17. P. 3653–3656. https://doi.org/10.1021/bi00662a001
  23. Котельников А. И., Кузнецов С. Н., Фогель В. Р., Лихтенштейн Г. И. Исследование микроструктуры биологических систем методом триплетных меток // Молекулярная биология. 1979. Т. 13, № 1. С. 152–159.
  24. Мажуль В. М., Зайцева Е. М., Щербин Д. Г. Фосфоресценция при комнатной температуре триптофановых остатков белков // Журнал прикладной спектроскопии. 2002. Т. 69, № 2. С. 186–191.
  25. Perez-Ruiz T., Martinez-Lozano C., Tomas V., Martin J. Determination of allopurinol by micelle-stabilised roomtemperature phosphorescence in real samples // Journal of Pharmaceutical and Biomedical Analysis. 2003. Vol. 32, № 2. P. 225–231.
  26. Мажуль В. М., Зайцева Е. М., Мицкевич Л. Г., Федуркина Н. В., Курганов Б. И. Фосфоресцентный анализ внутри молекулярной динамики мышечной гликогенфосфорилазы b // Биофизика. 1999. Т. 44, № 6. С. 1010–1016.
  27. Иванов В. Л., Артюхин А. Б., Ляшкевич С. Ю. Фотозамещение атомов галогена в галогенозамещенных ксантеновых красителях в водном растворе сульфита натрия // Вестник Московского универститета. Химия. 1999. Т. 40, № 3. С. 198–200.
  28. Кананович С. Ж., Мажуль В. М. Люминесцентный анализ структурно-динамического состояния щелочной фосфатазы Escherichia coli // Журн. прикл. спектроскопии. 2003. Т. 70, № 5. С. 673–677.
  29. Mishra V., Heath R. J. Structural and Biochemical Features of Human Serum Albumin Essential for Eukaryotic Cell Culture // Int. J. Mol. Sci. 2021. Vol. 22, № 16. Article number 8411. https://doi.org/10.3390/ijms22168411
  30. Ghuman J., Zunszain P. A., Petitpas I., Bhattacharya A. A., Otagiri M., Curry S. Structural basis of the drug-binding specificityof human serum albumin // J. Mol. Biol. 2005. Vol. 353. P. 38–52. https://doi.org/10.1016/j.jmb.2005.07.075
  31. Xu J., Wang M., Zheng Y., Tang L. Spectroscopic Technique-Based Comparative Investigation on the Interaction of Theaflavins with Native and Glycated Human Serum Albumin // J. Molecules. 2019. Vol. 24, № 17. Article number 3171. https://doi.org/10.3390/molecules24173171
  32. Кецле Г. А., Левшин Л. В., Мельников Г. В., Салецкий А. М. Спектрально-люминесцентное исследование сольватации молекул эозина в водно-спиртовых растворах // Журн. прикл. спектроскопии. 1987. Т. 46, № 5. С. 746–750.
  33. Alarcón E., Edwards A. M., Aspée A., Borsarelli C. D., Lissi A. D. Photophysics and photochemistry of rose bengal bound to human serum albumin Photochem // Photobiol. Sci. 2009. Vol. 8, № 7. P. 933–943. https://doi.org/10.1039/B901056D
  34. Vlasova I. M., Polyansky D. V., Saletsky A. M. Investigation of mechanism of binding of molecular probe eosin to human serum albumin by Raman spectroscopy method // Laser Physics Letters. 2007. Vol. 4, № 5. P. 390–395.
  35. Yang Q., Zhou X., Chen X. Combined molecular docking and multi-spectroscopic investigation on the interaction between Eosin B and human serum albumin // Journal of Luminescence. 2011. Vol. 131, № 4. P. 581–586. https://doi.org/10.1016/j.jlumin.2010.10.033
  36. Melnikov A. G., Pravdin A. B., Kochubey V. I., Kuptsova A. V., Melnikov G. V. Interglobular Diffusion of an Energy Donor in Triplet-Triplet Energy Transfer in Proteins // Journal of Spectroscopy. 2013. Vol. 2013. Article ID 261874. https://doi.org/10.1155/2013/261874
  37. Dobretsov G. E., Syrejschikova T. I., Smolina N. V., Uzbekov M. G. CAPIDAN, a fluorescent reporter for detection of albumin drug-binding site changes: monograph. Chapter 7. In: Human Serum Albumin (HSA): Functional Structure, Synthesis and Therapeutic Uses / ed. Travis Stokes. New York : Nova Science Publishers, Inc., 2015. P. 129–271.
  38. Romanov A. N., Gularyan S. K., Polyak B. M., Sakovich R. A., Dobretsov G. E., Sarkisov O. M. Electronically excited states of membrane fluorescent probe 4-dimethylaminochalcone. Results of quantum chemical calculations // Phys. Chem. Chem. Phys. 2011. Vol. 13, № 20. P. 9518–9524. https://doi.org/10.1039/c0cp02880k
  39. Alarcón E., Edwards A. M., Aspee A., Moran F. E., Borsarelli C. D., Lissi A. E., Gonzalez-Nilo D., Poblete H., Scaiano J. C. Photophysics and photochemistry of dyes bound to human serum albumin are determined by the dye localization // Photochem. Photobiol. Sci. 2010. Vol. 9, iss. 1. P. 93–102. https://doi.org/10.1039/b9pp00091g
  40. Ranganarayanan P., Thanigesan N., Ananth V., Jayaraman V. K., Ramakrishnan V. Identification of Glucose-Binding Pockets in Human Serum Albumin Using Support Vector Machine and Molecular Dynamics Simulations // IEEE/ACM Trans. Comput. Biol. Bioinform. 2016. Vol. 13, № 1. P. 148–157. https://doi.org/10.1109/TCBB.2015.2415806
  41. Szkudlarek A., Maciążek-Jurczyk M., Chudzik M., Równicka-Zubik J., Sułkowska A. Alteration of human serum albumin tertiary structure induced by glycation. Spectroscopic study // Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2016. Vol. 153. P. 560–565. https://doi.org/10.1016/j.saa.2015.09.018
  42. Lakowicz J. R. Principles of fluorescence spectroscopy, 3rd ed. Berlin : Springer, 2006. 673 p. https://doi.org/10.1007/978-0-387-46312-4
  43. Feinstein E., Deikus G., Rusinova E., Rachofsky E. L., Alexander Ross J. B., Laws W. R. Constrained Analysis of Fluorescence Anisotropy Decay: Application to Experimental Protein Dynamics // J. Biophys. 2003. Vol. 84, № 1. P. 599–611. https://doi.org/10.1016/S0006-3495(03)74880-2
  44. Volkova O. I., Kuleshova A. A., Korvatovskii B. N., Saletsky A. M. Photophysical Processes in Molecules of Halogenated Fluorescein Derivatives in Anionic Reverse Micelles // Optics and Spectroscopy. 2020. Vol. 128, № 12. P. 1970–1977. https://doi.org/10.1134/S0030400X2012108X

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies