The role of coupling, noise and harmonic impact in oscillatory activity of an excitable FitzHugh–Nagumo oscillator network

Cover Page

Cite item

Full Text

Abstract

Background and Objectives: The dynamics of a separate small ensemble and coupled small ensembles of excitable FitzHugh–Nagumo oscillators is studied. Different topologies and types of coupling between elements, as well as external noise and harmonic impact are considered. Models and Methods: The main model is a ring of five locally coupled excitable FitzHugh–Nagumo neurons, into which additional connections and external disturbances are introduced. Also, two such systems are connected via a hub, represented by a single FitzHugh–Nagumo neuron. To assess the influence of various system parameters on the neuronal spike activity, maps of the average firing frequency are constructed in the plane of control parameters, and the critical values of the parameters necessary for the occurrence of spikes are found. Results: It has been shown that a repulsive local coupling can excite spike activity in a network of excitable oscillators without external impact, and the addition of remote coupling expands the range of parameters in which firings are observed. Besides, by introducing anomalous Lévy noise, it is possible to excite oscillations in the system at lower values of the coupling strength between neurons than by utilising normal Gaussian noise. Also, in a system of two ensembles of neurons connected through a common hub, the interlayer coupling leads not only to synchronisation of the firing frequencies of these ensembles, but also to a transition to the spike activity mode even when no firing was observed in individual ensembles. By changing the parameters of the external harmonic impact and the coupling coefficients of the two ensembles with a common hub, it is possible to influence the average firing frequency.

About the authors

Elena Vladislavovna Rybalova

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

Tatyana Romanovna Bogatenko

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

Andrey Vladimirovich Bukh

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

Tatyana Evgen'evna Vadivasova

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

References

  1. Babiloni C., Lizio R., Marzano N., Capotosto P., Soricelli A., Triggiani A. I., Cordone S., Gesualdo L., Del Percio C. Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms // International Journal of Psychophysiology. 2016. Vol. 103. P. 88–102. https://doi.org/10.1016/j.ijpsycho.2015.02.008
  2. Reinhart R. M. G., Nguyen J. A. Working memory revived in older adults by synchronizing rhythmic brain circuits // Nature Neuroscience. 2019. Vol. 22, iss. 5. P. 820–827. https://doi.org/10.1038/s41593-019-0371-x
  3. Herbet G., Duffau H. Revisiting the functional anatomy of the human brain: Toward a meta-networking theory of cerebral functions // Physiological Reviews. 2020. Vol. 100, iss. 3. P. 1181–1228. https://doi.org/10.1152/physrev.00033.2019
  4. Hramov A. E., Frolov N. S., Maksimenko V. A., Kurkin S. A., Kazantsev V. B., Pisarchik A. N. Functional networks of the brain: From connectivity restoration to dynamic integration // Physics-Uspekhi. 2021. Vol. 64, № 6. P. 584–616. https://doi.org/10.3367/UFNe.2020.06.038807
  5. Jones C. K. R. T. Stability of the travelling wave solution of the FitzHugh–Nagumo system // Transactions of the American Mathematical Society. 1984. Vol. 286, № 2. P. 431–469. https://doi.org/10.1090/S0002-9947-1984-0760971-6
  6. Pertsov A. M., Ermakova E. A., Panfilov A. V. Rotating spiral waves in a modified Fitz-Hugh-Nagumo model // Physica D : Nonlinear Phenomena. 1984. Vol. 14, № 1. P. 117–124. https://doi.org/10.1016/0167-2789(84)90008-3
  7. Nekorkin V. I., Shapin D. S., Dmitrichev A. S., Kazantsev V. B., Binczak S., Bilbault J. M. Heteroclinic contours and self-replicated solitary waves in a reaction-diffusion lattice with complex threshold excitation // Physica D: Nonlinear Phenomena. 2008. Vol. 237, № 19. P. 2463–2475. https://doi.org/10.1016/j.physd.2008.03.035
  8. Shepelev I. A., Slepnev A. V., Vadivasova T. E. Different synchronization characteristics of distinct types of traveling waves in a model of active medium with periodic boundary conditions // Communications in Nonlinear Science and Numerical Simulation. 2016. Vol. 38. P. 206–217. https://doi.org/10.1016/j.cnsns.2016.02.020
  9. Omelchenko I., Provata A., Hizanidis J., Schöll E., Hövel P. Robustness of chimera states for coupled FitzHugh–Nagumo oscillators // Phys. Rev. E. 2015. Vol. 91, iss. 2. P. 022917. https://doi.org/10.1103/PhysRevE.91.022917
  10. Semenova N., Zakharova A., Anishchenko V., Schöll E. Coherence-resonance chimeras in a network of excitable elements // Phys. Rev. Lett. 2016. Vol. 117, iss. 1. P. 014102. https://doi.org/10.1103/PhysRevLett.117.014102
  11. Xu F., Zhang J., Jin M., Huang S., Fang T. Chimera states and synchronization behavior in multilayer memristive neural networks // Nonlinear Dynamics. 2018. Vol. 94, iss. 2. P. 775–783. https://doi.org/10.1007/s11071-018-4393-9
  12. Majhi S., Bera B. K., Ghosh D., Perc M. Chimera states in neuronal networks: A review // Physics of Life Reviews. 2019. Vol. 28. P. 100–121. https://doi.org/10.1016/j.plrev.2018.09.003
  13. Batista C. A. S., Batista A. M., de Pontes J. A. C., Viana R. L., Lopes S. R. Chaotic phase synchronization in scalefree networks of bursting neurons // Phys. Rev. E. 2007. Vol. 76, iss. 1. P. 016218. https://doi.org/10.1103/PhysRevE.76.016218
  14. Wang Q., Chen G., Perc M. Synchronous bursts on scalefree neuronal networks with attractive and repulsive coupling // PLoS ONE. 2011. Vol. 6, № 1. P. e15851. https://doi.org/10.1371/journal.pone.0015851
  15. Li C., Chen G. Stability of a neural network model with small-world connections // Phys. Rev. E. 2003. Vol. 68, iss. 5. P. 052901. 10.1103 / PhysRevE.68.052901
  16. Qu J., Wang R., Yan C., Du Y. Spatiotemporal behavior of small-world neuronal networks using a map-based model // Neural Processing Letters. 2017. Vol. 45. P. 689–701. https://doi.org/10.1007/s11063-016-9547-5
  17. Kazanovich Y. B., Borisyuk R. M. Dynamics of neural networks with a central element // Neural Networks. 1999. Vol. 12, iss. 3. P. 441–454. https://doi.org/10.1016/S0893-6080(98)00136-1
  18. Achard S., Salvador R., Whitcher B., Suckling J., Bullmore E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs // Journal of Neuroscience. 2006. Vol. 26, iss. 1. P. 63–72. https://doi.org/10.1523/JNEUROSCI.3874-05.2006
  19. Чик Д., Борисюк Р. М., Казанович Я. Б. Режимы синхронизации в сети нейронов Ходжкина–Хаксли с центральным элементом // Математическая биология и биоинформатика. 2008. Т. 3, вып. 1. С. 16–35. https://doi.org/10.17537/2008.3.16
  20. Patel A., Kosko B. Stochastic resonance in continuous and spiking neuron models with Lévy noise // IEEE Transactions on Neural Networks. 2008. Vol. 19, iss. 12. P. 1993–2008. https://doi.org/10.1109/TNN.2008.2005610
  21. Wang Z. Q., Xu Y., Yang H. Lévy noise induced stochastic resonance in an FHN model // Science China Technological Sciences. 2016. Vol. 59. P. 371–375. https://doi.org/10.1007/s11431-015-6001-2
  22. Wu J., Xu Y., Ma J. Lévy noise improves the electrical activity in a neuron under electromagnetic radiation // PloS ONE. 2017. Vol. 12, № 3. P. e0174330. https://doi.org/10.1371/journal.pone.0174330
  23. Guo Y., Wang L., Wei F., Tan J. Dynamical behavior of simplified FitzHugh–Nagumo neural system driven by Lévy noise and Gaussian white noise // Chaos, Solitons & Fractals. 2019. Vol. 127. P. 118–126. https://doi.org/10.1016/j.chaos.2019.06.031
  24. Fitzhugh R. Thresholds and plateaus in the Hodgkin–Huxley nerve equations // The Journal of General Physiology. 1960. Vol. 43, iss. 5. P. 867–896. https://doi.org/10.1085/jgp.43.5.867
  25. Nagumo J., Arimoto S., Yoshizawa S. An active pulse transmission line simulating nerve axon // Proceedings of the IRE. 1962. Vol. 50, iss. 10. P. 2061–2070. https://doi.org/10.1109/JRPROC.1962.288235
  26. Janicki A., Weron A. Simulation and chaotic behavior of a-Stable stochastic processes. New York : Marcel Dekker, 1994. 376 p. https://doi.org/10.1201/9781003208877

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».