Assessment of spatiotemporal heterogeneity of two-dimensional images on the example of photoplethysmograpic imaging of hemodynamics

Cover Page

Cite item

Full Text

Abstract

Background and Objectives: The problem of representation of multidimensional data on a two-dimensional plane arises during the processing of a series of two-dimensional images in the spatiotemporal and time-frequency domains. When implementing time-frequency analysis, each point of the object is characterized by a function of two arguments, therefore, to visualize the results on a two-dimensional plane, it is necessary to reduce the data dimension. Materials and Methods: This paper describes a method for color coding the correlation of spectral features at each point of a two-dimensional dynamic image. The novelty of the proposed method in the using of the wavelet correlation function of the reference area with all other regions of interest of the object. In this case, the correlation value is color-coded and forms a correlation map in each of the analyzed spectral ranges. Results: This allows to select areas that have similar time-frequency spectra of investigated characteristics of the object. The application of the method is considered on the example of the analysis of the microhemodynamics of the human hand using photoplethysmographic imaging. The analysis was carried out in the spectral range (0.005–2 Hz), covering both cardiac and low-frequency hemodynamic oscillations of the respiratory, myogenic, neurogenic, and endothelial ranges. In general, there is a tendency to a decrease of correlation of the spectrum with distance from the reference area and with a decrease in the analyzed signal frequency. It is shown that photoplethysmographic signals recorded in the area of the distal phalanx of the finger are predominantly representative of cardiac oscillations in microhemodynamics of other areas of the hand (correlation of about 0.7) and less representative with respect to endothelial, neurogenic, myogenic and respiratory oscillations (correlation of about 0.4). Due to the established high spatial inhomogeneity of the spectral features, it is recommended to use several reference areas when using contact photoplethysmographic measurements. Conclusion: The considered method of visualizing the spatial correlation of spectral features can find practical application also in the field of hemodynamic analysis using laser Doppler, laser speckle contrast, thermographic or hyperspectral imaging.

About the authors

Andrey Aleksandrovich Sagaidachnyi

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

Ivan Yu. Volkov

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

Maria Olegovna Tsoy

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

Andrey Vladimirovich Fomin

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

Dmitriy Igorevich Mayskov

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

Andrey Valer'evich Antonov

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

Ivan Sergeevich Zaletov

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

Anatoly Vladimirovich Skripal

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

References

  1. Allen J., Howell K. Microvascular imaging: Techniques and opportunities for clinical physiological measurements // Physiological Measurement. 2014. Vol. 35, № 7. P. R91–R141. https://doi.org/10.1088/0967-3334/35/7/R91
  2. Dremin V. V., Zherebtsov E. A., Popov A. P., Meglinski I. V., Bykov A. V. Hyperspectral imaging of diabetes mellitus skin complications // Biomedical Photonics for Diabetes Research. CRC Press, 2022. P. 177–195.
  3. Zherebtsov E., Dremin V., Popov A., Doronin A., Kurakina D., Kirillin M., Bykov A. Hyperspectral imaging of human skin aided by artificial neural networks // Biomedical Optics Express. 2019. Vol. 10, № 7. P. 3545–3559. https://doi.org/10.1364/BOE.10.003545
  4. Sagaidachnyi A., Mayskov D., Fomin A., Zaletov I., Skripal A. Separate extraction of human eccrine sweat gland activity and peripheral hemodynamics from high-and low-quality thermal imaging data // Journal of Thermal Biology. 2022. Vol. 110. Article number 103351. https://doi.org/10.1016/j.jtherbio.2022.103351
  5. Майсков Д. И., Сагайдачный А. А., Залетов И. С., Фомин А. В., Скрипаль А. В. Интегральное картирование активности потовых желез методом дифференциальной термографии // Известия Саратовского университета. Новая серия. Серия: Физика. 2021. Т. 21, вып. 3. С. 222–232. https://doi.org/10.18500/1817-3020-2021-21-3-222-232
  6. Сагайдачный А. А., Майсков Д. И., Залетов И. С., Фомин А. В., Скрипаль Ан. В. Детектирование активности единичных потовых желез методом макротермографии и ее взаимосвязь с температурой кожи и периферической гемодинамикой // Известия Саратовского университета. Новая серия. Серия: Физика. 2020. Т. 20, вып. 2. С. 103–115. https://doi.org/10.18500/1817-3020-2020-20-2-103-115
  7. Cardone D., Pinti P., Merla A. Thermal infrared imaging-based computational psychophysiology for psychometrics // Computational and Mathematical Methods in Medicine. 2015. Vol. 2015. Article number 984353. https://doi.org/10.1155/2015/984353
  8. Taratorin A. M., Godik E. E., Guljaev Y. V. Functional mapping of dynamic biomedical images // Measurement. 1990. Vol. 8, № 3. P. 137–140. https://doi.org/10.1016/0263-2241(90)90055-B
  9. Фрик П. Г., Соколов Д. Д., Степанов Р. А. Вейвлет-анализ пространственно-временной структуры физических полей // Успехи физических наук. 2022. Т. 192, № 1. С. 69–99. https://doi.org/10.3367/UFNe.2020.10.038859
  10. Borik S., Lyra S., Perlitz V., Keller M., Leonhardt S., Blazek V. On the spatial phase distribution of cutaneous low-frequency perfusion oscillations // Scientific Reports. 2022. Vol. 12, № 1. P. 1–18. https://doi.org/10.1038/s41598-022-09762-0
  11. Tikhonova I. V., Grinevich A. A., Tankanag A. V. Analysis of phase interactions between heart rate variability, respiration and peripheral microhemodynamics oscillations of upper and lower extremities in human // Biomedical Signal Processing and Control. 2022. Vol. 71. P. 103091. https://doi.org/10.1016/j.bspc.2021.103091
  12. Mizeva I., Potapova E., Dremin V., Kozlov I., Dunaev A. Spatial heterogeneity of cutaneous blood flow respiratory-related oscillations quantified via laser speckle contrast imaging. PLoS ONE. 2021. Vol. 16, № 5. Article number e0252296. https://doi.org/10.1371/journal.pone.0252296
  13. Mizeva I., Dremin V., Potapova E., Zherebtsov E., Kozlov I., Dunaev A. Wavelet analysis of the temporal dynamics of the laser speckle contrast in human skin. IEEE Transactions on Biomedical Engineering. 2019. Vol 67, № 7. P. 1882–1889. https://doi.org/10.1109/TBME.2019.2950323
  14. Hultman M., Larsson M., Strömberg T., Henricson J., Iredahl F., Fredriksson I. Flowmotion imaging analysis of spatiotemporal variations in skin microcirculatory perfusion // Microvascular Research. 2022. Vol. 146. Article number 104456. https://doi.org/10.1016/j.mvr.2022.104456
  15. Волков И. Ю., Сагайдачный А. А., Фомин А. В. Фотоплетизмографическая визуализация гемодинамики и двухмерная оксиметрия // Известия Саратовского университета. Новая серия. Серия: Физика. 2022. Т. 22, вып. 1. С. 15–45. https://doi.org/10.18500/1817-3020-2022-22-1-15-45
  16. Procka P., Celovska D., Smondrk M., Borik S. Correlation Mapping of Perfusion Patterns in Cutaneous Tissue // Applied Sciences. 2022. Vol. 12, № 15. Article number 7658. https://doi.org/10.3390/app12157658
  17. Кубланов В. С., Пуртов К. С. Дистанционная фотоплетизмография в задаче исследования вариабельности сердечного ритма // Биомедицинская радиоэлектроника. 2015. № 8. С. 3–9.
  18. Кульминский Д. Д., Курбако А. В., Сказкина В. В., Прохоров М. Д., Пономаренко В. И., Киселев А. Р., Безручко Б. П., Караваев А. С. Разработка цифрового датчика пальцевой фотоплетизмограммы // Известия Саратовского университета. Новая серия. Серия: Физика. 2021. Т. 21, вып. 1. С. 58–68. https://doi.org/10.18500/1817-3020-2021-21-1-58-68
  19. Симонян М. А., Сказкина В. В., Посненкова О. М., Ишбулатов Ю. М., Шварц В. А., Боровкова Е. И., Киселев А. Р. Анализ спектральных показателей сигнала фотоплетизмограммы и их динамики в зависимости от возраста пациента для задач скрининга сердечно-сосудистых заболеваний // Профилактическая медицина. 2021. Т. 24, № 8. С. 73–79. https://doi.org/10.17116/profmed20212408173
  20. Karavaev A. S., Borovik A. S., Borovkova E. I., Orlova E. A., Simonyan M. A., Ponomarenko V. I., Kiselev A. R. Low-frequency component of photoplethysmogram reflects the autonomic control of blood pressure // Biophysical Journal. 2021. Vol. 120, № 13. P. 2657–2664. https://doi.org/10.1016/j.bpj.2021.05.020
  21. Kiselev A. R., Borovkova E. I., Shvartz V. A., Skazkina V. V., Karavaev A. S., Prokhorov M. D., Bockeria O. L. Low-frequency variability in photoplethysmographic waveform and heart rate during on-pump cardiac surgery with or without cardioplegia // Scientific Reports. 2020. Vol. 10, № 1. P. 1–9. https://doi.org/10.1038/s41598-020-58196-z
  22. Tankanag A. V., Grinevich A. A., Tikhonova I. V., Chemeris N. K. An analysis of phase relationships between oscillatory processes in the human cardiovascular system // Biophysics. 2020. Vol. 65, № 1. P. 159–164. https://doi.org/10.1134/s0006350920010194
  23. Tankanag A., Krasnikov G., Mizeva I. A pilot study: Wavelet cross-correlation of cardiovascular oscillations under controlled respiration in humans // Microvascular Research. 2020. Vol. 130. Article number 103993. https://doi.org/10.1016/j.mvr.2020.103993
  24. Tankanag A. V., Krasnikov G. V., Chemeris N. K. Phase Coherence of Finger Skin Blood Flow Oscillations Induced by Controlled Breathing in Humans // Physics of Biological Oscillators: New Insights into Non-Equilibrium and Non-Autonomous Systems / Aneta Stefanovska, Peter V. E. McClintock. Cham, Switzerland, Springer, 2021. P. 281–289. https://doi.org/10.1007/978-3-030-59805-1_18
  25. Короновский А. А., Храмов А. Е. Непрерывный вейвлетный анализ и его приложения. М. : Физматлит, 2003. 176 с.
  26. Nesme-Ribes E., Frick P., Sokoloff D., Zakharov V., Ribes J. C., Vigouroux A., Laclare F. Wavelet analysis of Maunder minimum as recorded in Solar diameter data // Comptes Rendus de Academie des Sciences, Paris, Serie II. 1995. Vol. 321, № 2 B. P. 525–532.
  27. Мизева И. А., Степанов Р. А., Фрик П. Г. Вейвлетные кросскорреляции двумерных полей // Вычислительные методы и программирование. 2006. Т. 7, № 2. С. 172–179.
  28. Федорович А. А. Функциональное состояние регуляторных механизмов микроциркуляторного кровотока в норме и при артериальной гипертензии по данным лазерной допплеровской флоуметрии // Регионарное кровообращение и микроциркуляция. 2010. Т. 9, № 1. С. 49–60.
  29. Крупаткин А. И. Пульсовые и дыхательные осцилляции кровотока в микроциркуляторном русле кожи человека // Физиология человека. 2008. Т. 34, № 3. С. 70–76.
  30. Kvandal P., Landsverk S. A., Bernjak A., Stefanovska A., Kvernmo H. D., Kirkebøen K. A. Low-frequency oscillations of the laser Doppler perfusion signal in human skin // Microvascular Research. 2006. Vol. 72, № 3. P. 120–127. https://doi.org/10.1016/j.mvr.2006.05.006
  31. Bernjak A., Stefanovska A., McClintock P. V., OwenLynch P. J., Clarkson P. B. Coherence between fluctuations in blood flow and oxygen saturation // Fluctuation and Noise Letters. 2012. Vol. 11, № 1. Article number 1240013. https://doi.org/10.1142/S0219477512400135

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies