Submicron vaterite particles, loaded with porphyrazine photosensitizer for photodynamic therapy of bladder carcinoma cells

Cover Page

Cite item

Full Text

Abstract

Background and Objectives: Bladder cancer is one of the ten most common cancers causing a high mortality rate. Photodynamic therapy (PDT) is one of the promising ways to treat this disease. To increase the effectiveness of PDT it is necessary to ensure selective delivery of photosensitizer to the tumor. Selective delivery systems such as nano- and microparticles of calcium carbonate in the polymorphic modification of vaterite are of great interest to solve this problem. Therefore, the aim of this study was to investigate submicron particles of vaterite as agents for selective delivery of photosensitizer PzBn on human bladder T24 cell culture. Materials and Methods: Calcium carbonate particles were obtained by mixing equimolar solutions of CaCl2 and Na2CO3 salts in the presence of glycerol. PzBn was immobilized by adsorbing the substance on preliminarily synthesized vaterite particles. The loading efficiency was evaluated using the spectrophotometric method. The experiments were carried out on the T24 human bladder carcinoma cell line. Intracellular localization was assessed using fluorescent laser confocal scanning microscopy. The study of the dynamics of PzBnVp accumulation by cells was carried out by spectrophotometry. Dark toxicity and photodynamic activity were analyzed using the MTT test. Results: The efficiency of loading porphyrazine into vaterite particles is over 9%. It has been shown that PzBnVp is characterized by rather rapid accumulation by T24 cells: the maximum accumulation is recorded already 30 minutes after its addition, after which the intensity of the fluorescence signal remains at a constant level for 5 hours of observation. It has been demonstrated that PzBnVp is characterized by low dark toxicity with high photodynamic activity. Conclusion: The possibility of loading vaterite particles with the photodynamic dye porphyrazine has been demonstrated. A high rate of entry of vaterite particles into the cell and the release of the loaded photosensitizer from particles and its subsequent redistribution over subcellular structures have been shown. The preservation of the photodynamic activity of porphyrazine in the composition of vaterite particles and the absence of dark toxicity in the studied concentration range have been demonstrated. Vaterite particles can be considered as promising agents for the selective delivery of porphyrazine to the tumor in order to increase the efficiency of photodynamic therapy.

About the authors

Lydia N. Shestakova

Lobachevsky State University of Nizhny Novgorod

23 Gagarin Av., Nizhny Novgorod 603950, Russia

Natalia E. Galochkina

Lobachevsky State University of Nizhny Novgorod

23 Gagarin Av., Nizhny Novgorod 603950, Russia

Daria B. Trushina

First Moscow State Medical University

2–4 Bolshaya Pirogovskaya St., Moscow 119991, Russia

Larisa G. Klapshina

Institute of Organometallic Chemistry of Russian Academy of Sciences

49 Tropinina St., Nizhny Novgorod 603137, Russia

Svetlana A. Lermontova

Institute of Organometallic Chemistry of Russian Academy of Sciences

49 Tropinina St., Nizhny Novgorod 603137, Russia

Irina V. Balalaeva

Lobachevsky State University of Nizhny Novgorod

23 Gagarin Av., Nizhny Novgorod 603950, Russia

Natalia Yu. Shilyagina

Lobachevsky State University of Nizhny Novgorod

23 Gagarin Av., Nizhny Novgorod 603950, Russia

References

  1. Jain P., Kathuria H., Momin M. Clinical therapies and nano drug delivery systems for urinary bladder cancer // Pharmacology & Therapeutics. 2021. Vol. 226. Article number 107871. https://doi.org/10.1016/j.pharmthera.2021.107871
  2. Sung H., Ferlay J., Siegel R. L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries // CA : A Cancer Journal for Clinicians. 2021. Vol. 71, iss. 3. P. 209–249. https://doi.org/10.3322/caac.21660
  3. DeGeorge K. C., Holt H. R., Hodges S. C. Bladder Cancer: Diagnosis and Treatment // American Family Physician. 2017. Vol. 96, iss. 8. P. 507–514.
  4. Railkar R., Agarwal P. K. Photodynamic Therapy in the Treatment of Bladder Cancer: Past Challenges and Current Innovations // European Urology Focus. 2018. Vol. 4, iss. 4. P. 509–511. https://doi.org/10.1016/j.euf.2018.08.005
  5. Al-Omari S. Toward a molecular understanding of the photosensitizer-copper interaction for tumor destruction // Biophys Rev. 2013. Vol. 5, iss. 4. P. 305–311. https://doi.org/10.1007/s12551-013-0112-4
  6. Kruger C. A., Abrahamse H. Utilisation of Targeted Nanoparticle Photosensitiser Drug Delivery Systems for the Enhancement of Photodynamic Therapy // Molecules. 2018. Vol. 23, iss. 10. Article number 2628. https://doi.org/10.3390/molecules23102628
  7. Du Y., Chen B. Combination of drugs and carriers in drug delivery technology and its development // Drug Design, Development and Therapy. 2019. Vol. 13. P. 1401–1408. https://doi.org/10.2147/dddt.s198056
  8. He X. W., Liu T., Chen Y. X., Cheng D. J., Li X. R., Xiao Y., Feng Y. L. Calcium carbonate nanoparticle delivering vascular endothelial growth factor-C siRNA effectively inhibits lymphangiogenesis and growth of gastric cancer in vivo // Cancer Gene Ther. 2008. Vol. 15, iss. 3. P. 193–202. https://doi.org/10.1038/sj.cgt.7701122
  9. Peng C., Zhao Q., Gao C. Sustained delivery of doxorubicin by porous CaCO3 and chitosan/alginate multilayers-coated CaCO3 microparticles // Colloids and Surfaces A : Physicochemical and Engineering Aspects. 2010. Vol. 353, iss. 2. P. 132–139. https://doi.org/10.1016/j.colsurfa.2009.11.004
  10. Sato K., Seno M., Anzai J.-I. Release of Insulin from Calcium Carbonate Microspheres with and without Layerby-Layer Thin Coatings // Polymers. 2014. Vol. 6, iss. 8. P. 2157–2165. https://doi.org/10.3390/polym6082157
  11. Begum G., Reddy T. N., Kumar K. P., Dhevendar K., Singh S., Amarnath M., Misra S., Rangari V. K., Rana R. K. In Situ Strategy to Encapsulate Antibiotics in a Bioinspired CaCO3 Structure Enabling pH-Sensitive Drug Release Apt for Therapeutic and Imaging Applications // ACS Applied Materials & Interfaces. 2016. Vol. 8, iss. 34. P. 22056–22063. https://doi.org/10.1021/acsami.6b07177
  12. Lengert E., Verkhovskii R., Yurasov N., Genina E., Svenskaya Y. Mesoporous carriers for transdermal delivery of antifungal drug // Materials Letters. 2019. Vol. 248. P. 211–213. https://doi.org/10.1016/j.matlet.2019.04.028
  13. Boedtkjer E., Pedersen S. F. The Acidic Tumor Microenvironment as a Driver of Cancer // Annual Review of Physiology. 2020. Vol. 82. P. 103–126. https://doi.org/10.1146/annurev-physiol-021119-034627
  14. Zhang X., Lin Y., Gillies R. J. Tumor pH and its measurement // Journal of Nuclear Medicine. 2010. Vol. 51, iss. 8. P. 1167–1170. https://doi.org/10.2967/jnumed.109.068981
  15. Chiang P. H., Fan C. H., Jin Q., Yeh C. K. Enhancing Doxorubicin Delivery in Solid Tumor by Superhydrophobic Amorphous Calcium Carbonate-Doxorubicin Silica Nanoparticles with Focused Ultrasound // Mol. Pharmaceutics. 2022. Vol. 19, iss. 11. P. 3894–3905. https://doi.org/10.1021/acs.molpharmaceut.2c00384
  16. Sudareva N., Suvorova O., Saprykina N., Vlasova H., Vilesov A. Doxorubicin delivery systems based on doped CaCO3 cores and polyanion drug conjugates // J. Microencapsul. 2021. Vol. 38, iss. 3. P. 164–176. https://doi.org/10.1080/02652048.2021.1872724
  17. Ibiyeye K. M., Nordin N., Ajat M., Zuki A. B. Z. Ultrastructural Changes and Antitumor Effects of Doxorubicin/Thymoquinone-Loaded CaCO3 Nanoparticles on Breast Cancer Cell Line // Front Oncol. 2019. Vol. 9. Article number 599. https://doi.org/10.3389/fonc.2019.00599
  18. Khan M. W., Zou C., Hassan S., Din F. U. Cisplatin and oleanolic acid Co-loaded pH-sensitive CaCO3 nanoparticles for synergistic chemotherapy // RSC Advances. 2022. Vol. 12, iss. 23. P. 14808–14818. https://doi.org/10.1039/d2ra00742h
  19. Zhao P., Li M., Chen Y., He C., Zhang X., Fan T., Yang T., Lu Y., Lee R. J., Ma X., Luo J., Xiang G. Selenium-doped calcium carbonate nanoparticles loaded with cisplatin enhance efficiency and reduce side effects // International Journal of Pharmaceutics. 2019. Vol. 570. Article number 118638. https://doi.org/10.1016/j.ijpharm.2019.118638
  20. Hammadi N. I., Abba Y., Hezmee M. N. M., Razak I. S. A., Kura A. U., Zakaria Z. A. B. Evaluation of in vitro efficacy of docetaxel-loaded calcium carbonate aragonite nanoparticles (DTX–CaCO3NP) on 4T1 mouse breast cancer cell line // In Vitro Cellular & Developmental Biology. 2017. Vol. 53, iss. 10. P. 896–907. https://doi.org/10.1007/s11626-017-0197-3
  21. Qiu N., Yin H., Ji B., Klauke N., Glidle A., Zhang Y., Song H., Cai L., Ma L., Wang G., Chen L., Wang W. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin // Materials Science and Engineering : C. 2012. Vol. 32, iss. 8. P. 2634–2640. https://doi.org/10.1016/j.msec.2012.08.026
  22. Dong Q., Li J., Cui L., Jian H., Wang A., Bai S. Using porous CaCO3/hyaluronic acid nanocages to accommodate hydrophobic photosensitizer in aqueous media for photodynamic therapy // Colloids and Surfaces A : Physicochemical and Engineering Aspects. 2017. Vol. 516. P. 190–198. https://doi.org/10.1016/j.colsurfa.2016.12.027
  23. Svenskaya Y. I., Pavlov A. M., Gorin D. A., Gould D. J., Parakhonskiy B. V., Sukhorukov G. B. Photodynamic therapy platform based on localized delivery of photosensitizer by vaterite submicron particles // Colloids and Surfaces B : Biointerfaces. 2016. Vol. 146. P. 171–179. https://doi.org/10.1016/j.colsurfb.2016.05.090
  24. Zhao P., Tian Y., You J., Hu X. Recent Advances of Calcium Carbonate Nanoparticles for Biomedical Applications // Bioengineering. 2022. Vol. 9, iss. 11. Article number 691. https://doi.org/10.3390/bioengineering9110691
  25. Trofimov A. D., Ivanova A. A., Zyuzin M. V., Timin A. S. Porous Inorganic Carriers Based on Silica, Calcium Carbonate and Calcium Phosphate for Controlled / Modulated Drug Delivery: Fresh Outlook and Future Perspectives // Pharmaceutics. 2018. Vol. 10, iss. 4. Article number 167. https://doi.org/10.3390/pharmaceutics10040167
  26. Izquierdo M. A., Vyšniauskas A., Lermontova S. A., Grigoryev I. S., Shilyagina N. Y., Balalaeva I. V., Klapshina L. G., Kuimova M. K. Dual use of porphyrazines as sensitizers and viscosity markers in photodynamic therapy // Journal of Materials Chemistry B. 2015. Vol. 3, iss. 6. P. 1089–1096. https://doi.org/10.1039/C4TB01678E
  27. Lermontova S. A., Grigor’ev I. S., Peskova N. N., Ladilina E. Y., Balalaeva I. V., Klapshina L. G., Boyarskii V. P. New promising porphyrazine-based agents for optical theranostics of cancer // Russian Journal of General Chemistry. 2017. Vol. 87, iss. 3. P. 479–484. https://doi.org/10.1134/S1070363217030173
  28. Trushina D. B., Bukreeva T. V., Antipina M. N. SizeControlled Synthesis of Vaterite Calcium Carbonate by the Mixing Method: Aiming for Nanosized Particles // Crystal Growth & Design. 2016. Vol. 16, iss. 3. P. 1311–1319. https://doi.org/10.1021/acs.cgd.5b01422
  29. Shilyagina N. Y., Plekhanov V., Shkunov I. V., Shilyagin P. A., Dubasova L. V., Brilkina А. А., Sokolova Е. А., Turchin I. V., Balalaeva I. V. LED Light Source for in vitro Study of Photosensitizing Agents for Photodynamic Therapy // Sovremennye tekhnologii v meditsine. 2014. Vol. 6, iss. 12. P. 15–22.
  30. Trushina D. B., Borodina T. N., Artemov V. V., Bukreeva T. V. Immobilization of Photoditazine on Vaterite Porous Particles and Analysis of the System Stability in Model Media // Technical Physics. 2018. Vol. 63, iss. 9. P. 1345–1351. https://doi.org/10.1134/S1063784218090220
  31. Svenskaya Y., Parakhonskiy B., Haase A., Atkin V., Lukyanets E., Gorin D., Antolini R. Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer // Biophys. Chem. 2013. Vol. 182. P. 11–15. https://doi.org/10.1016/j.bpc.2013.07.006
  32. Svenskaya Y. I., Navolokin N. A., Bucharskaya A. B., Terentyuk G. S., Kuz’mina A. O., Burashnikova M. M., Maslyakova G. N., Lukyanets E. A., Gorin D. A. Calcium carbonate microparticles containing a photosensitizer photosens: Preparation, ultrasound stimulated dye release, and in vivo application // Nanotechnologies in Russia. 2014. Vol. 9, iss. 7. P. 398–409. https://doi.org/10.1134/S1995078014040181
  33. Correia J. H., Rodrigues J. A., Pimenta S., Dong T., Yang Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions // Pharmaceutics. 2021. Vol. 13, iss. 9. Article number 1332. https://doi.org/10.3390/pharmaceutics13091332
  34. Piskorz J., Lijewski S., Gierszewski M., Gorniak K., Sobotta L., Wicher B., Tykarska E., Düzgüneє N., Konopka K., Sikorski M., Gdaniec M., Mielcarek J., Goslinski T. Sulfanyl porphyrazines: Molecular barrellike self-assembly in crystals, optical properties and in vitro photodynamic activity towards cancer cells // Dyes and Pigments. 2017. Vol. 136. P. 898–908. https://doi.org/10.1016/j.dyepig.2016.09.054
  35. Wieczorek E., Mlynarczyk D. T., Kucinska M., Dlugaszewska J., Piskorz J., Popenda L., Szczolko W., Jurga S., Murias M., Mielcarek J., Goslinski T. Photophysical properties and photocytotoxicity of free and liposome-entrapped diazepinoporphyrazines on LNCaP cells under normoxic and hypoxic conditions // European Journal of Medicinal Chemistry. 2018. Vol. 150, iss. P. 64–73. https://doi.org/10.1016/j.ejmech.2018.02.064
  36. Piskorz J., Konopka K., Düzgüneş N., Gdaniec Z., Mielcarek J., Goslinski T. Diazepinoporphyrazines containing peripheral styryl substituents and their promising nanomolar photodynamic activity against oral cancer cells in liposomal formulations // ChemMedChem. 2014. Vol. 9, iss. 8. P. 1775–1782. https://doi.org/10.1002/cmdc.201402085
  37. Krasnopeeva E. L., Melenevskaya E. Y., Klapshina L. G., Shilyagina N. Y., Balalaeva I. V., Smirnov N. N., Smirnov M. A., Yakimansky A. V. Poly(methacrylic Acid)-Cellulose Brushes as Anticancer Porphyrazine Carrier // Nanomaterials. 2021. Vol. 11, iss. 8. Article number 1997. https://doi.org/10.3390/nano11081997
  38. Synatschke C. V., Nomoto T., Cabral H., Förtsch M., Toh K., Matsumoto Y., Miyazaki K., Hanisch A., Schacher F. H., Kishimura A., Nishiyama N., Müller A. H., Kataoka K. Multicompartment micelles with adjustable poly(ethylene glycol) shell for efficient in vivo photodynamic therapy. ACS Nano, 2014, vol. 8, iss. 2, pp. 1161–1172. https://doi.org/10.1021/nn4028294

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies