Interrelation between pulse wave forms in the peripheral arteries registered by methods of impedance rheography and ultrasonic dopplerography

Cover Page

Cite item

Full Text

Abstract

Background and Objectives: Impedance plethysmography and Doppler ultrasound, in most cases, are considered as independent methods for analyzing hemodynamics. This work shows the presence of similarities in the shape of pulse waves recorded by the two indicated methods at rest and during exercise tests. The dynamics of the volume and velocity of blood flow in the radial artery was studied at rest, during an occlusive test and a test with a deep breath. Materials and Methods: The method of impedance rheography was used to determine the dynamics of the blood volume in the artery, and the method of ultrasound dopplerography was used to determine the linear velocity of arterial blood flow. The equation that considers the irregular distribution of erythrocytes velocity in the cross-section of a blood vessel has been obtained for a correct quantitative description of the dynamics of the volumetric blood flow velocity. Results: It has been determined that both the deep breath test and the occlusive test lead to vasodilation of the radial artery. In this case, the test with deep breath causes the appearance of an additional peak in the diastole which agrees in time with the negative (retrograde) diastolic peak of the blood flow velocity. Comparative analysis of the integrated velocity and volume waves demonstrates phase matching and a linear dependence of the shape of these waves at rest which are disrupted during the deep breath test. Conclusions: The proposed equation for calculating volumetric blood flow enables one to study the processes of autoregulation of blood flow in vessels by controlling the balance of changes in blood volume and velocity by the methods of impedance rheography and ultrasound dopplerography and can potentially form the basis for the development of appropriate methods of functional diagnostics.

About the authors

Ivan Sergeevich Zaletov

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

Andrey Aleksandrovich Sagaidachnyi

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

Anatoly Vladimirovich Skripal

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

Viktor Alexandrovich Klochkov

Saratov State Medical University named after V. I. Razumovsky

Bolshaya Kazachia st., 112 Saratov, 410012 Russia

Dmitriy Igorevich Mayskov

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

Andrey Vladimirovich Fomin

Saratov State University

410012, Russia, Saratov, Astrakhanskaya street, 83

References

  1. Huisman M. V., Böller H. R., ten Cate J. W., Vreeken J. Serial impedance plethysmography for suspected deep venous thrombosis in outpatients // New England Journal of Medicine. 1986. Vol. 314, № 13. P. 823–828. https://doi.org/10.1056/NEJM198603273141305
  2. Liu S. H., Cheng D. C., Su C. H. A cuffless blood pressure measurement based on the impedance plethysmography technique // Sensors. 2017. Vol. 17, № 5. Article number 1176. https://doi.org/10.3390/s17051176
  3. Huynh T. H., Jafari R., Chung W. Y. Noninvasive cuffless blood pressure estimation using pulse transit time and impedance plethysmography // IEEE Transactions on Biomedical Engineering. 2018. Vol. 66, № 4. P. 967–976. https://doi.org/10.1109/TBME.2018.2865751
  4. Soukup L., Hruskova J., Jurak P., Halamek J., Zavodna E., Viscor I., Vondra V. Comparison of noninvasive pulse transit time determined from Doppler aortic flow and multichannel bioimpedance plethysmography // Medical & Biological Engineering & Computing. 2019. Vol. 57, № 5. P. 1151–1158. https://doi.org/10.1007/s11517-018-01948-x
  5. Mašanauskienл E., Sadauskas S., Naudžiūnas A., Unikauskas A., Stankevičius E. Impedance plethysmography as an alternative method for the diagnosis of peripheral arterial disease // Medicina. 2014. Vol. 50, № 6. P. 334–339. https://doi.org/10.1016/j.medici.2014.11.007
  6. Кобрисев П. А., Туйкин Т. С., Корженевский А. В. Разработка бесконтактного монитора жизненных показателей человека // Журнал радиоэлектроники [электронный журнал]. 2017. № 4. URL: http://jre.cplire.ru/jre/apr17/10/text.pdf (дата обращения: 08.09.2022).
  7. Brown B. H., Pryce W. I. J., Baumber D., Clarke R. G. Impedance plethysmography: Can it measure changes in limb blood flow // Medical and Biological Engineering. 1975. Vol. 13, № 5. P. 674–682. https://doi.org/10.1007/BF02477325
  8. Цой М. О., Постнов Д. Э. Метод выделения значимых компонент для оценки вариабельности формы пульсовых волн // Известия Саратовского университета. Новая серия. Серия : Физика. 2021. Т. 21, вып. 1. С. 36–47. https://doi.org/10.18500/1817-3020-2021-21-1-36-47
  9. Залетов И. С., Клочков В. А., Сагайдачный А. А., Скрипаль Ан. В., Фомин А. В. Импедансная реография периферических артерий высокой степени локализации при воздействии гравитационной пробы // Методы компьютерной диагностики в биологии и медицине-2021 : сборник статей Всероссийской школы-семинара. Саратов : Саратовский источник, 2021. С. 27–31.
  10. Wilder-Smith E., Liu L., Ma K. T. M., Ong B. K. Relationship of inspiratory flow rate and volume on digit tip skin and ulnar artery vasoconstrictor responses in healthy adults // Microvascular Research. 2005. Vol. 69, № 1–2. P. 95–100. https://doi.org/10.1016/j.mvr.2005.01.003
  11. Allen J., Frame J. R., Murray A. Microvascular blood flow and skin temperature changes in the fingers following a deep inspiratory gasp // Physiological Measurement. 2002. Vol. 23, № 2. P. 365. https://doi.org/10.1088/0967-3334/23/2/312
  12. Mayrovitz H. N., Groseclose E. E. Neurovascular responses to sequential deep inspirations assessed via laser-Doppler perfusion changes in dorsal finger skin // Clinical Physiology and Functional Imaging. 2002. Vol. 22, № 1. P. 49–54. https://doi.org/10.1046/j.1475-097x.2002.00404.x
  13. Сагайдачный А. А., Скрипаль А. В. Окклюзионная проба: биофизические механизмы реакции, методы анализа, перспективы применения: учебное пособие для студентов. Саратов : Изд-во «Саратовский источник», 2019. 81 с.
  14. Аникина Н. Ю., Коровина В. А., Тарасова А. В., Ушакова Н. Я., Ярошенко Ю. А. Гидродинамика. Физические основы гемодинамики: учебно-методическое пособие. Архангельск : Изд-во Северного государственного медицинского университета, 2021. 111 с.
  15. Bernstein D. P. Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations // Journal of Electrical Bioimpedance. 2010. Vol. 1, № 1. P. 2–17. https://doi.org/10.5617/jeb.51
  16. Ramalli A., Aizawa K., Shore A. C., Morizzo C., Palombo C., Lenge M., Tortoli P. Continuous simultaneous recording of brachial artery distension and wall shear rate: A new boost for flow-mediated vasodilation // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2018. Vol. 66, № 3. P. 463–471. https://doi.org/10.1109/TUFFC.2018.2889111
  17. Kubicek W. G., From A. H., Patterson R. P., Witsoe D. A., Castaneda A., Lillehei R. C., Ersek R. Impedance cardiography as a noninvasive means to monitor cardiac function // JAAMI: Journal of the Association for the Advancement of Medical Instrumentation. 1970. Vol. 4, № 2. P. 79–84.
  18. Shimazu H., Yamakoshi K. I., Togawa T., Fukuoka M., Ito H. Evaluation of the parallel conductor theory for measuring human limb blood flow by electrical admittance plethysmography // IEEE Transactions on Biomedical Engineering. 1982. Vol. 1. P. 1–7. https://doi.org/10.1109/TBME.1982.324957
  19. Eicke B. M., Milke K., Schlereth T., Birklein F. Comparison of continuous wave Doppler ultrasound of the radial artery and laser Doppler flowmetry of the fingertips with sympathetic stimulation // Journal of Neurology. 2004. Vol. 251, № 8. P. 958–962. https://doi.org/10.1007/s00415-004-0471-7

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies