Development of aluminum matrix composite with improved mechanical properties by the directional regulation of the chemical composition of the reinforcing dispersed phase surface
- 作者: Morozov N.F.1, Zemtsova E.G.1, Kudymov V.K.1, Morozov P.E.1, Semenov B.N.1, Yurchuk D.V.1, Smirnov V.M.1
-
隶属关系:
- St. Petersburg University
- 期: 卷 24, 编号 1 (2024)
- 页面: 97-108
- 栏目: Mechanics
- URL: https://journals.rcsi.science/1816-9791/article/view/353478
- DOI: https://doi.org/10.18500/1816-9791-2024-24-1-97-108
- EDN: https://elibrary.ru/TLUZSI
- ID: 353478
如何引用文章
全文:
详细
For obtaining new metal matrix composites, one needs to develop approaches to the selection of reinforcing additives, the identification of the relationship of the properties of the resulting material with the composition, concentration and morphology of the additives introduced, the creation and search for new affordable and cheap additives. As one of the solutions to this problem, the authors propose to obtain aluminum matrix composites based on the structuring of an Al matrix with titanium carbide nanostructures ($\leq 5$ nm) by atomic layer deposition (ALD). The resulting material has an important feature — the absence of obvious interface boundaries between the Al matrix and the reinforcing carbide phase, that ensures the components binding into a single whole. Composites, for the hardening of which a reinforcing phase with surface carbide nanostructures is used, in addition to a higher tensile strength, demonstrate a more plastic fracture pattern characteristic of dispersed hardening of materials. With an increase in the amount of the composite reinforcement from 1 to $5\%$, embrittlement of the material does not occur, as is observed when carbide particles are introduced into the Al matrix by other methods.
作者简介
Nikita Morozov
St. Petersburg University
Email: n.morozov@spbu.ru
ORCID iD: 0000-0003-3890-522X
Scopus 作者 ID: 7005573911
Researcher ID: K-2696-2013
Russia, 199034, St. Petersburg, Universitetskaya nab., 7-9
Elena Zemtsova
St. Petersburg University
Email: ezimtsova@yandex.ru
ORCID iD: 0000-0003-2603-2812
Russia, 199034, St. Petersburg, Universitetskaya nab., 7-9
Vladimuir Kudymov
St. Petersburg University
Email: v.k.kudymov@gmail.com
ORCID iD: 0009-0002-4044-6990
Russia, 199034, St. Petersburg, Universitetskaya nab., 7-9
Pavel Morozov
St. Petersburg University
Email: comitcont@yandex.ru
ORCID iD: 0009-0000-3526-3810
Russia, 199034, St. Petersburg, Universitetskaya nab., 7-9
Boris Semenov
St. Petersburg University
Email: b.semenov@spbu.ru
ORCID iD: 0000-0002-8870-6520
Scopus 作者 ID: 7101626297
Russia, 199034, St. Petersburg, Universitetskaya nab., 7-9
Denis Yurchuk
St. Petersburg University
Email: 667-766-d@mail.ru
Russia, 199034, St. Petersburg, Universitetskaya nab., 7-9
Vladimir Smirnov
St. Petersburg University
编辑信件的主要联系方式.
Email: vms11@yandex.ru
ORCID iD: 0000-0002-7358-1884
Russia, 199034, St. Petersburg, Universitetskaya nab., 7-9
参考
- Rino J. J., Chandramohan D., Sucitharan K. S., Jebin V. D. An overview on development of aluminium metal matrix composites with hybrid reinforcement // International Journal of Science and Research. 2012. Vol. 1, iss. 3. P. 196–203.
- Tjong S. C. Novel nanoparticle reinforced metal matrix composites with enhanced mechanical properties // Advanced Engineering Materials. 2007. Vol. 9, iss. 8. P. 639–652. https://doi.org/10.1002/adem.200700106
- Wang J., Li Z., Fan G., Pan H., Chen Z., Zhang D. Reinforcement with graphene nanosheets in aluminum matrix composites // Scripta Materialia. 2012. Vol. 66, iss. 8. P. 594–597. https://doi.org/10.1016/j.scriptamat.2012.01.012
- Saravanan C., Subramanian K., Ananda Krishnan V., Narayanan R. S. Effect of particulate reinforced aluminium metal matrix composite — A review // Mechanics and Mechanical Engineering. 2015. Vol. 19, iss. 1. P. 23–30.
- Das D. K., Mishra P. C., Singh S., Pattanaik S. Fabrication and heat treatment of ceramic-reinforced aluminium matrix composites — A review // International Journal of Mechanical and Materials Engineering. 2014. Vol. 9, iss. 1. P. 1–15. https://doi.org/10.1186/s40712-014-0006-7
- Alaneme K. K., Aluko A. O. Fracture toughness (K1C) and tensile properties of as-cast and age-hardened aluminium (6063)-silicon carbide particulate composites // Scientia Iranica. 2012. Vol. 19, iss. 4. P. 992–996. https://doi.org/10.1016/j.scient.2012.06.001
- Tjong Sie-Chin. 8 — Processing and deformation characteristics of metals reinforced with ceramic nanoparticles // Nanocrystalline Materials / ed. by Sie-Chin Tjong. 2nd ed. Oxford : Elsevier, 2014. P. 269–304. https://doi.org/10.1016/B978-0-12-407796-6.00008-7
- Casati R., Vedani M. Metal matrix composites reinforced by nano-particles — A review // Metals. 2014. Vol. 4, iss. 1. P. 65–83. https://doi.org/10.3390/met4010065
- Mobasherpour I., Tofigh A. A., Ebrahimi M. Effect of nano-size Al2O3 reinforcement on the mechanical behavior of synthesis 7075 aluminum alloy composites by mechanical alloying // Materials Chemistry and Physics. 2013. Vol. 138, iss. 2–3. P. 535–541. https://doi.org/10.1016/j.matchemphys.2012.12.015
- Rana R. S., Purohit R., Das S. Review of recent studies in Al matrix composites // International Journal of Scientific and Engineering Research. 2012. Vol. 3, iss. 6. P. 1–16.
- Pramod S. L. Aluminum — based cast in-situ composites: A review // Journal of Materials Engineering and Performance. 2015. Vol. 24, iss. 6. P. 2185–2207. https://doi.org/10.1007/s11665-015-1424-2
- Zemtsova E. G., Yurchuk D. V., Morozov P. E., Kudymov V. K., Smirnov V. M. Features of the synthesis of the dispersed tic phase with nickel nanostructures on the surface to create an aluminum-based metal composite // Nanomaterials. 2021. Vol. 11, iss. 10. Art. 2499. https://doi.org/10.3390/nano11102499
- Bauri R., Yadav D., Suhas G. Effect of friction stir processing (FSP) on microstructure and properties of Al-TiC in situ composite // Materials Science and Engineering A. 2011. Vol. 528, iss. 13. P. 4732–4739. https://doi.org/10.1016/j.msea.2011.02.085
补充文件


