Nonlinear statics and dynamics of porous functional-gradient nanobeam taking into account transverse shifts
- 作者: Krysko A.V.1, Krechin A.N.2, Zhigalov M.V.1, Krysko V.A.1
-
隶属关系:
- Lavrentiev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
- Yuri Gagarin State Technical University of Saratov
- 期: 卷 24, 编号 4 (2024)
- 页面: 587-597
- 栏目: Mechanics
- URL: https://journals.rcsi.science/1816-9791/article/view/353456
- DOI: https://doi.org/10.18500/1816-9791-2024-24-4-587-597
- EDN: https://elibrary.ru/ZFBSON
- ID: 353456
如何引用文章
全文:
详细
In this paper, nonlinear mathematical models of functionally gradient porous nanobeams are constructed taking into account transverse shifts. Transverse shifts are described using kinematic models of the second (S. P. Timoshenko) and third approximations (Sheremetyev – Pelekh). From the Sheremetyev – Pelekh model, as a special case, the kinematic models of the second (S. P. Timoshenko) and first approximation (Bernoulli – Euler) follow. Geometric nonlinearity is accepted according to T. von Karman, nanoeffects are accepted according to the modified Yang moment theory of elasticity. The required equations are derived from the Ostrogradsky – Hamilton principle. An efficient algorithm has been developed that allows us to consider both static and chaotic dynamics problems. Numerical examples are given.
作者简介
Anton Krysko
Lavrentiev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
Email: anton.krysko@gmail.com
ORCID iD: 0000-0002-9389-5602
SPIN 代码: 3862-0430
15 Lavrentiev Ave., Novosibirsk 630090, Russia
Alexander Krechin
Yuri Gagarin State Technical University of Saratov
Email: san9.antonov@yandex.ru
SPIN 代码: 9228-8100
Russia, 410054, Saratov, Politekhnicheskaya st., 77
Maxim Zhigalov
Lavrentiev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
Email: zhigalovm@yandex.ru
ORCID iD: 0000-0002-0642-7211
SPIN 代码: 5055-2568
Scopus 作者 ID: 25923214900
Researcher ID: AAB-7146-2021
15 Lavrentiev Ave., Novosibirsk 630090, Russia
Vadim Krysko
Lavrentiev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: tak@san.ru
ORCID iD: 0000-0002-4914-764X
SPIN 代码: 1024-5028
15 Lavrentiev Ave., Novosibirsk 630090, Russia
参考
- Kumar R., Lal A., Singh B. N., Singh J. Non-linear analysis of porous elastically supported FGM plate under various loading. Composite Structures, 2020, vol. 233, art. 111721. https://doi.org/10.1016/j.compstruct.2019.111721
- Shafiei N., Mirjavadi S. S., Afshari B. M., Rabby S., Kazemi M. Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams. Computer Methods Applied Mechanics and Engineering, 2017, vol. 322, pp. 615–632. https://doi.org/10.1016/j.cma.2017.05.007
- Shafiei N., Mirjavadi S. S., Afshari B. M., Rabby S., Hamouda A. M. S. Nonlinear thermal buckling of axially functionally graded micro and nanobeams. Composite Structures, 2017, vol. 168, pp. 428–439. https://doi.org/10.1016/j.compstruct.2017.02.048
- Changho Oh, Stovall C. B., Dhaouadi W., Carpick R. W., de Boer M. P. The strong effect on MEMS switch reliability of film deposition conditions and electrode geometry. Microelectronics Reliability, 2019, vol. 98, pp. 131–143. https://doi.org/10.1016/j.microrel.2019.04.023
- Fan F., Xu Y., Sahmani S., Safaei B. Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. Computer Methods in Applied Mechanics and Engineering, 2020, vol. 372, art. 113400. https://doi.org/10.1016/j.cma.2020.113400
- Ebrahimi F., Barati M. R. Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams. Mechanics of Advanced Materials and Structures, 2017, vol. 24, iss. 11, pp. 924–936. https://doi.org/10.1080/15376494.2016.1196795
- Jouneghani F. Z., Dimitri R., Tornabene F. Structural response of porous FG nanobeams under hygro-thermo-mechanical loadings. Composites Part B: Engineering, 2018, vol. 152, pp. 71–78. https://doi.org/10.1016/j.compositesb.2018.06.023
- Ebrahimi F., Dabbagh A. Wave dispersion characteristics of heterogeneous nanoscale beams via a novel porosity-based homogenization scheme. The European Physical Journal Plus, 2019, vol. 134, art. 157. https://doi.org/10.1140/epjp/i2019-12510-9
- Messai A., Fortas L., Merzouki T., Houari M. S. A. Vibration analysis of FG reinforced porous nanobeams using two variables trigonometric shear deformation theory. Structural Engineering and Mechanics, 2022, vol. 81, iss. 4, pp. 461–479. https://doi.org/10.12989/sem.2022.81.4.461
- XuX., Karami B., Shahsavari D. Time-dependent behavior of porous curved nanobeam. International Journal of Engineering Science, 2021, vol. 160, art. 103455. https://doi.org/10.1016/j.ijengsci.2021.103455
- Yang F., Chong A. C. M., Lam D. C. C., Tong P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 2002, vol. 39, pp. 2731–2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Awrejcewicz J., Krysko A. V., Smirnov A., Kalutsky L. A., Zhigalov M. V., Krysko V. A. Mathematical modeling and methods of analysis of generalized functionally gradient porous nanobeams and nanoplates subjected to temperature field. Meccanica, 2022, vol. 57, pp. 1591–1616. https://doi.org/10.1007/s11012-022-01515-7
- Miller R. E., Shenoy V. B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 2000, vol. 11, iss. 3, pp. 139–147. https://doi.org/10.1088/0957-4484/11/3/301
- Krysko V. A., Awrejcewicz J., Komarov S. A. Nonlinear deformations of spherical panels subjected to transversal load action. Computer Methods Applied Mechanics and Engineering, 2005, vol. 194, pp. 3108–3126. https://doi.org/10.1016/j.cma.2004.08.005
- Gulick D. Encounters with chaos. New York, McGraw-Hill College, 1992. 224 p.
- Awrejcewicz J., Krysko A. V., Erofeev N. P., Dobriyan V., Barulina M. A., Krysko V. A. Quantifying chaos by various computational methods. Part 1: Simple systems. Entropy, 2018, vol. 20, iss. 3, art. 175. https://doi.org/10.3390/e20030175
补充文件


