On the physical equations of a deformable body at the loading step with implementation based on a mixed FEM

封面

如何引用文章

全文:

详细

To obtain the deformation matrix of the prismatic finite element at the loading step, taking into account the physical nonlinearity, three variants of physical equations were used. In the first variant, the defining equations of the theory of plastic flow are implemented, according to which the increment of deformations is divided into elastic and plastic parts. The increment of elastic deformations is related to the increments of stresses by Hooke's law. The relationship of plastic strain increments with stress increments is determined based on the hypothesis of the proportionality of the components of the plastic strain increment tensor to the components of the stress deviator. In the second variant, the components of the plastic strain increment tensor are obtained on the basis of the proposed hypothesis about the proportionality of these components to the components of the stress increment deviator at the loading step. In this variant, as well as in the first variant, the hypothesis of incompressibility of the material during plastic deformation is accepted. In the third variant, the defining equations at the loading step were obtained on the basis of the proposed hypothesis about the proportionality of the components of the deformation increment deviator to the components of the stress increment deviator without dividing the deformation increments into elastic and plastic parts. The proportionality coefficient turned out to be a function of the chord modulus of the deformation diagram. The hypothesis of incompressibility of the material during plastic deformation was not accepted, but the dependence between the first invariants of strain tensors and stress tensors obtained from the experiment was realized. For comparison with the first and second variants of the defining equations, this dependence between the first invariants of strain and stress tensors is determined by the elastic deformation formula. A prismatic element with triangular bases is adopted as the finite element. Displacement increments and stress increments are taken as nodal unknowns. Approximation of the desired values of the finite element method, in a mixed formulation through nodal values, was carried out using linear functions. The stress-strain state matrix is presented on the basis of a mixed functional obtained from the physical expression of the equality of the possible and actual work of external and internal forces at the loading step with the replacement of the actual work of internal forces by the difference of the full and additional work of internal forces. The calculation example shows an adequate correspondence in the calculation results based on the considered variants of the physical relations and the preference of the third variant of the defining equations of the theory of plasticity is noted.

作者简介

Natalia Gureeva

Financial University under the Government of the Russian Federation; Volgograd state agricultural academy

49 Leningradsky Prospekt, Moscow 125993, Russia

Rumiya Kiseleva

Volgograd State Agricultural University

26 Universitetskiy Prospekt, Volgograd 400002, Russia

Yuri Klochkov

Volgograd State Agricultural University; Volgograd state agricultural academy

26 Universitetskiy pr., Volgograd 400002, Russia

Anatoly Nikolaev

Volgograd State Agricultural University; Volgograd state agricultural academy

26 Universitetskiy pr., Volgograd 400002, Russia

Vitaly Ryabukha

Volgograd State Agricultural University; Volgograd state agricultural academy

26 Universitetskiy Prospekt, Volgograd 400002, Russia

参考

  1. Малинин Н. Н. Прикладная теория пластичности и ползучести. Москва : Машиностроение, 1975. 400 с. EDN: VLPSRF
  2. Голованов А. И., Султанов Л. У. Математические модели вычислительной нелинейной механики деформируемых сред. Казань : Казанский гос. ун-т, 2009. 464 с. EDN: QJWGNN
  3. Петров В. В. Нелинейная инкрементальная строительная механика. Москва : Инфра-Инженерия, 2014. 480 с. EDN: SFTTJV
  4. Бате К. Ю. Метод конечных элементов / пер. с англ. В. П. Шидловского ; под ред. Л. И. Турчака. Москва : Физматлит, 2010. 1022 с.
  5. Левин В. А. Нелинейная вычислительная механика прочности : в 5 т. Т. 1. Модели и методы. Образование и развитие дефектов. Москва : Физматлит, 2015. 456 с.
  6. Голованов А. И., Тюленева О. Н., Шигабутдинов А. Ф. Метод конечных элементов в статике и динамике тонкостенных конструкций. Москва : Физматлит, 2006. 392 с. EDN: QJPXPV
  7. Гуреева Н. А., Арьков Д. П. Реализация деформационной теории пластичности в расчетах плосконапряженных пластин на основе МКЭ в смешанной формулировке // Известия высших учебных заведений. Северо-Кавказский регион. Серия: Естественные науки. 2011. № 2. С. 12–15. EDN: NUPEON
  8. Самуль В. И. Основы теории упругости и пластичности : учебное пособие. Москва : Высшая школа, 1982. 264 с.
  9. Демидов С. П. Теория упругости. Москва : Высшая школа, 1979. 432 с.
  10. Гуреева Н. А., Клочков Ю. В., Николаев А. П., Юшкин В. Н. Напряженно-деформированное состояние оболочки вращения при использовании различных формулировок трехмерных конечных элементов // Строительная механика инженерных конструкций и сооружений. 2020. Т. 16, № 5. С. 361–379. https://doi.org/10.22363/1815-5235-2020-16-5-361-379, EDN: RRVXBB


Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
##common.cookie##