О физических уравнениях деформируемого тела на шаге нагружения с реализацией на основе смешанного МКЭ

Обложка

Цитировать

Полный текст

Аннотация

Для получения матрицы деформирования призматического конечного элемента на шаге нагружения с учетом физической нелинейности использованы три варианта физических уравнений. В первом варианте реализованы определяющие уравнения теории пластического течения, согласно которой приращение деформаций разделяется на упругую  и пластическую части. Приращения упругих деформаций  связаны с приращениями напряжений законом Гука. Связь приращений пластических деформаций с приращениями напряжений определяется на основе гипотезы о пропорциональности компонент тензора приращений пластических деформаций компонентам девиатора напряжений. Во втором варианте компоненты тензора приращений пластических деформаций получены на основе предложенной гипотезы о пропорциональности этих компонент компонентам девиатора приращений напряжений на шаге нагружения. В этом варианте так же, как и в первом варианте, принята гипотеза о несжимаемости материала при пластическом деформировании.  В третьем варианте определяющие уравнения на шаге нагружения получены на основе предложенной гипотезы о пропорциональности компонент девиатора приращений деформаций компонентам девиатора приращений напряжений без разделения приращений деформаций на упругую и пластическую части. Коэффициент пропорциональности оказался функцией хордового модуля диаграммы деформирования. Гипотеза о несжимаемости материала при пластическом деформировании не принималась, а реализована зависимость между первыми инвариантами тензоров деформаций и тензоров напряжений, получаемая из эксперимента. Для сравнения с первым и вторым вариантами определяющих уравнений эта зависимость между первыми инвариантами тензоров деформаций и напряжений определена по формуле упругого деформирования. В качестве конечного элемента принят призматический элемент с треугольными основаниями. В качестве узловых неизвестных приняты приращения перемещений и приращения напряжений. Аппроксимация искомых величин метода конечных элементов в смешанной формулировке через узловые значения осуществлялась с использованием линейных функций. Матрица напряженно-деформированного состояния представлена на основе смешанного функционала, полученного из физического выражения равенства возможных и действительных работ внешних и внутренних сил на шаге нагружения с заменой действительной работы внутренних сил разностью полной и дополнительной работы внутренних сил. На примере расчета показано адекватное соответствие в результатах расчета на основе рассмотренных вариантов физических соотношений и отмечена предпочтительность предложенного третьего варианта определяющих уравнений теории пластичности.

Об авторах

Наталья Анатольевна Гуреева

Финансовый университет при Правительстве Российской Федерации; Волгоградская государственная сельскохозяйственная академия

Россия, 125993, г. Москва, Ленинградский просп, д. 49

Румия Зайдуллаевна Киселева

Волгоградский государственный аграрный университет

400002, Российская Федерация, Волгоградская область, г. Волгоград, Университетский проспект, 26

Юрий Васильевич Клочков

Волгоградский государственный аграрный университет; Волгоградская государственная сельскохозяйственная академия

г Волгоград, пр-т Университетский 26

Анатолий Петрович Николаев

Волгоградский государственный аграрный университет; Волгоградская государственная сельскохозяйственная академия

г Волгоград, пр-т Университетский 26

Виталий Васильевич Рябуха

Волгоградский государственный аграрный университет; Волгоградская государственная сельскохозяйственная академия

400002, Российская Федерация, Волгоградская область, г. Волгоград, Университетский проспект, 26

Список литературы

  1. Малинин Н. Н. Прикладная теория пластичности и ползучести. Москва : Машиностроение, 1975. 400 с. EDN: VLPSRF
  2. Голованов А. И., Султанов Л. У. Математические модели вычислительной нелинейной механики деформируемых сред. Казань : Казанский гос. ун-т, 2009. 464 с. EDN: QJWGNN
  3. Петров В. В. Нелинейная инкрементальная строительная механика. Москва : Инфра-Инженерия, 2014. 480 с. EDN: SFTTJV
  4. Бате К. Ю. Метод конечных элементов / пер. с англ. В. П. Шидловского ; под ред. Л. И. Турчака. Москва : Физматлит, 2010. 1022 с.
  5. Левин В. А. Нелинейная вычислительная механика прочности : в 5 т. Т. 1. Модели и методы. Образование и развитие дефектов. Москва : Физматлит, 2015. 456 с.
  6. Голованов А. И., Тюленева О. Н., Шигабутдинов А. Ф. Метод конечных элементов в статике и динамике тонкостенных конструкций. Москва : Физматлит, 2006. 392 с. EDN: QJPXPV
  7. Гуреева Н. А., Арьков Д. П. Реализация деформационной теории пластичности в расчетах плосконапряженных пластин на основе МКЭ в смешанной формулировке // Известия высших учебных заведений. Северо-Кавказский регион. Серия: Естественные науки. 2011. № 2. С. 12–15. EDN: NUPEON
  8. Самуль В. И. Основы теории упругости и пластичности : учебное пособие. Москва : Высшая школа, 1982. 264 с.
  9. Демидов С. П. Теория упругости. Москва : Высшая школа, 1979. 432 с.
  10. Гуреева Н. А., Клочков Ю. В., Николаев А. П., Юшкин В. Н. Напряженно-деформированное состояние оболочки вращения при использовании различных формулировок трехмерных конечных элементов // Строительная механика инженерных конструкций и сооружений. 2020. Т. 16, № 5. С. 361–379. https://doi.org/10.22363/1815-5235-2020-16-5-361-379, EDN: RRVXBB


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах