On asymmetrical equilibrium states of annular plates under normal pressure
- 作者: Bauer S.M.1, Voronkova E.B.1
-
隶属关系:
- St. Petersburg University
- 期: 卷 24, 编号 1 (2024)
- 页面: 28-34
- 栏目: Mechanics
- URL: https://journals.rcsi.science/1816-9791/article/view/353471
- DOI: https://doi.org/10.18500/1816-9791-2024-24-1-28-34
- EDN: https://elibrary.ru/MEUNCA
- ID: 353471
如何引用文章
全文:
详细
The unsymmetrical buckling of annular plates with an elastically restrained edge which are subjected to normal pressure is studied in this paper. The unsymmetric part of the solution is sought in terms of multiples of the harmonics of the angular coordinate. A numerical method is employed to obtain the lowest load value, which leads to the appearance of waves in the circumferential direction. The effect of plate geometry (ratio of inner to outer radii) and boundary on the buckling load is examined. It is shown, that for an annulus the buckling pressure and the buckling mode number decreases as the inner radius increases. It is shown that as the internal radius increases, the plate loses stability as the buckling pressure decreases, which also leads to the buckling mode number decrease.
作者简介
Svetlana Bauer
St. Petersburg University
Email: s.bauer@spbu.ru
ORCID iD: 0000-0003-3732-2110
Scopus 作者 ID: 8549215600
Researcher ID: M-5054-2013
Russia, 199034, St. Petersburg, Universitetskaya nab., 7-9
Eva Voronkova
St. Petersburg University
编辑信件的主要联系方式.
Email: e.voronkova@spbu.ru
ORCID iD: 0000-0002-3065-4473
Russia, 199034, St. Petersburg, Universitetskaya nab., 7-9
参考
- Панов Д. Ю., Феодосьев В. И. О равновесии и потере устойчивости пологих оболочек при больших прогибах // Прикладная математика и механика. 1948. Т. 12, вып. 4. C. 389–406.
- Феодосьев В. И. Об одном способе решения нелинейных задач устойчивости деформируемых систем // Прикладная математика и механика. 1963. T. 27, вып. 2. С. 265–274.
- Cheo L. S., Reiss E. L. Unsymmetric wrinkling of circular plates // Quarterly of Applied Mathematics. 1973. Vol. 31, iss. 1. P. 75–91. https://doi.org/10.1090/qam/99710
- Морозов Н. Ф. К вопросу о существовании несимметричного решения в задаче о больших прогибах круглой пластинки, загруженной симметричной нагрузкой // Известия высших учебных заведений. Математика. 1961. № 2. C. 126–129.
- Piechocki W. On the nonlinear theory of thin elastic spherical shells: Nonlinear partial differential equations solutions in theory of thin elastic spherical shells subjected to temperature fields and external loading // Archiwum Mechaniki Stosowanej. 1969. Vol. 21, iss. 1. P. 81–102.
- Coman C. D., Bassom A. P. Asymptotic limits and wrinkling patterns in a pressurised shallow spherical cap // International Journal of Non-Linear Mechanics. 2016. Vol. 81. P. 8–18. https://doi.org/10.1016/j.ijnonlinmec.2015.12.004
- Coman C. D. On the asymptotic reduction of a bifurcation equation for edge-buckling instabilities // Acta Mechanica. 2018. Vol. 229. P. 1099–1109. https://doi.org/10.1007/s00707-017-2036-8
- Бауэр С. М., Воронкова Е. Б. О несимметричной форме потери устойчивости неоднородных круглых пластин // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия. 2021. Т. 8, № 2. С. 204–211. https://doi.org/10.21638/spbu01.2021.201, EDN: HDOOGN
- Bauer S. M., Voronkova E. B. On buckling behavior of inhomogeneous shallow spherical caps with elastically restrained edge // Analysis of Shells, Plates, and Beams in Advanced Structured Materials / eds.: H. Altenbach, N. Chinchaladze, R. Kienzler, W. H. Muller. Cham : Springer, 2020. P. 65–74. (Advanced Structured Materials, vol. 134). https://doi.org/10.1007/978-3-030-47491-1_4
- Bauer S. M., Voronkova E. B. Asymmetric buckling of heterogeneous annular plates // Recent Approaches in the Theory of Plates and Plate-Like Structures in Advanced Structured Materials / eds.: S. Bauer, V. A. Eremeyev, G. I. Mikhasev, N. F. Morozov, H. Altenbach. Cham : Springer, 2022. P. 17–26. (Advanced Structured Materials, vol. 151). https://doi.org/10.1007/978-3-030-87185-7_2
补充文件


