On the dynamic contact problem with two deformable stamps
- Autores: Babeshko V.A.1, Uafa S.B.1, Evdokimova O.V.2,1, Babeshko O.M.1, Telyatnikov I.S.2, Evdokimov V.S.1
-
Afiliações:
- Kuban State University
- Southern Scientific Center of the Russian Academy of Sciences
- Edição: Volume 24, Nº 1 (2024)
- Páginas: 4-13
- Seção: Mechanics
- URL: https://journals.rcsi.science/1816-9791/article/view/353469
- DOI: https://doi.org/10.18500/1816-9791-2024-24-1-4-13
- EDN: https://elibrary.ru/OZQYOM
- ID: 353469
Citar
Texto integral
Resumo
The problem of the time-harmonic behavior of two deformable semi-infinite stamps lying on a deformable base is considered. It is assumed that the stamps converge with parallel ends in such a way that they form a crack, defect, or tectonic fault in the convergence zone. The deformable die material has a simple rheology described by the Helmholtz equation. To consider the cases of deformable stamps of complex rheologies, a new universal modeling method can be used. It allows solutions of vector boundary value problems for systems of partial differential equations describing materials of complex rheologies to be represented as decomposed by solutions of individual scalar boundary value problems. A high-precision solution to the boundary value problem is constructed, which makes it possible to obtain a dispersion equation describing resonant frequencies. The existence of resonant frequencies for deformable stamps was predicted in the works of I. I. Vorovich. The result remains valid for the case of absolutely solid semi-infinite stamps. Earlier, it was shown that resonances arise in the contact problem of the oscillation of two absolutely rigid stamps of finite dimensions on a deformable layer. However, the dynamic contact problem for the case of two semi-infinite stamps acting on a multilayer medium has not been studied before. The study is based on the block element method, which makes it possible to construct exact solutions to boundary value problems for partial differential equations. In addition, factorization methods are used and some subtle properties of the Wiener – Hopf equations are used, in particular, those belonging to the famous mathematician M. G. Crane. The proposed methods make it possible to conduct research for the entire frequency range and an arbitrary distance between the ends of semi-infinite plates. The results of the study can be used to evaluate the strength properties of structures with contact joints made of different types of materials in dynamic modes.
Palavras-chave
Sobre autores
Vladimir Babeshko
Kuban State University
Email: babeshko41@mail.ru
ORCID ID: 0000-0002-6663-6357
Russia, 350040, Krasnodar, Stavropolskaya st., 149
Samir Uafa
Kuban State University
Email: samir_wafa@rambler.ru
Russia, 350040, Krasnodar, Stavropolskaya st., 49
Olga Evdokimova
Southern Scientific Center of the Russian Academy of Sciences; Kuban State University
Email: evdokimovaolga@mail.ru
41 Chekhov St., Rostov-on-Don 344006, Russia
Olga Babeshko
Kuban State University
Email: babeshko49@mail.ru
Russia, 350040, Krasnodar, Stavropolskaya st., 149
Ilya Telyatnikov
Southern Scientific Center of the Russian Academy of Sciences
Email: ilux_t@list.ru
ORCID ID: 0000-0001-8500-2133
Scopus Author ID: 56440235900
Researcher ID: AAE-4227-2021
41 Chekhov St., Rostov-on-Don 344006, Russia
Vladimir Evdokimov
Kuban State University
Autor responsável pela correspondência
Email: evdok_vova@mail.ru
Russia, 350040, Krasnodar, Stavropolskaya st., 149
Bibliografia
- Галин Л. А. Контактные задачи теории упругости и вязкоупругости. Москва : Наука, 1980. 303 с.
- Штаерман И. Я. Контактная задача теории упругости. Москва : Гостехиздат, 1949. 272 с.
- Горячева И. Г., Добычин М. Н. Контактные задачи трибологии. Москва : Машиностроение, 1988. 256 с.
- Papangelo A., Ciavarella M., Barber J. R. Fracture mechanics implications for apparent static friction coefficient in contact problems involving slip-weakening laws // Proceedings of the Royal Society A (London). 2015. Vol. 471, iss. 2180. 20150271. https://doi.org/10.1098/rspa.2015.0271
- Ciavarella M. The generalized Cattaneo partial slip plane contact problem. I — Theory // International Journal of Solids and Structures. 1998. Vol. 35, iss. 18. P. 2349–2362. https://doi.org/10.1016/S0020-7683(97)00154-6
- Ciavarella M. The generalized Cattaneo partial slip plane contact problem. II — Examples // International Journal of Solids and Structures. 1998. Vol. 35, iss. 18. P. 2363–2378. https://doi.org/10.1016/S0020-7683(97)00155-8
- Zhou S., Gao X. L. Solutions of half-space and half-plane contact problems based on surface elasticity // Zeitschrift fur angewandte Mathematik und Physik. 2013. Vol. 64. P. 145–166. https://doi.org/10.1007/s00033-012-0205-0
- Guler M. A., Erdogan F. The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings // International Journal of Mechanical Sciences. 2007. Vol. 49, iss. 2. P. 161–182. https://doi.org/10.1016/j.ijmecsci.2006.08.006
- Ke L.-L., Wang Y.-S. Two-dimensional sliding frictional contact of functionally graded materials // European Journal of Mechanics – A/Solids. 2007. Vol. 26, iss. 1. P. 171–188. https://doi.org/10.1016/j.euromechsol.2006.05.007
- Almqvist A., Sahlin F., Larsson R., Glavatskih S. On the dry elasto-plastic contact of nominally flat surfaces // Tribology International. 2007. Vol. 40, iss. 4. P. 574–579. https://doi.org/10.1016/j.triboint.2005.11.008
- Almqvist A. An LCP solution of the linear elastic contact mechanics problem. 2013. 43216. URL: http://www.mathworks.com/matlabcentral/fileexchange (дата обращения: 01.12.2023). https://doi.org/10.13140/RG.2.1.3960.7200
- Andersson L. E. Existence results for quasistatic contact problems with Coulomb friction // Applied Mathematics and Optimization. 2000. Vol. 42. P. 169–202. https://doi.org/10.1007/s002450010009
- Cocou M. A class of dynamic contact problems with Coulomb friction in viscoelasticity // Nonlinear Analysis: Real World Applications. 2015. Vol. 22. P. 508–519. https://doi.org/10.1016/j.nonrwa.2014.08.012
- Ворович И. И. Спектральные свойства краевой задачи теории упругости для неоднородной полосы // Доклады Академии наук СССР. 1979. Т. 245, № 4. С. 817–820.
- Ворович И. И. Резонансные свойства упругой неоднородной полосы // Доклады Академии наук СССР. 1979. Т. 245, № 5. С. 1076–1079.
- Бабешко В. А., Евдокимова О. В., Бабешко О. М. Фрактальные свойства блочных элементов и новый универсальный метод моделирования // Доклады Российской академии наук. Физика, технические науки. 2021. Т. 499, № 1. С. 30–35. https://doi.org/10.31857/S2686740021040039, EDN: LXXMAT
- Ворович И. И., Бабешко В. А. Динамические смешанные задачи теории упругости для неклассических областей. Москва : Наука, 1979. 320 с.
- Бабешко В. А., Евдокимова О. В., Бабешко О. М., Евдокимов В. С. О механической концепции самосборки наноматериалов // Известия Российской академии наук. Механика твердого тела. 2023. № 5. C. 111–119. https://doi.org/10.31857/S057232992360007X, EDN: GFZOYW
Arquivos suplementares


