Asymptotic analysis of the axisymmetric problem for the transverse compression of a thin elastic disk in the case of mixed boundary conditions along its faces
- Authors: Kaplunov J.D.1,2, Zupancic B.3, Nikonov A.V.4
-
Affiliations:
- Keele University
- Brunel University
- National Institute of Chemistry
- University of Ljubljana
- Issue: Vol 24, No 1 (2024)
- Pages: 57-62
- Section: Mechanics
- URL: https://journals.rcsi.science/1816-9791/article/view/353474
- DOI: https://doi.org/10.18500/1816-9791-2024-24-1-57-62
- EDN: https://elibrary.ru/LNJVVN
- ID: 353474
Cite item
Full Text
Abstract
The axisymmetric problem for the transverse compression of a thin elastic disk is considered in slip absence. An asymptotic solution for the interior stress-strain state is constructed. An approach to determining a plane boundary layer localized near the outer contour of the disk is outlined.
About the authors
Julius Davidovich Kaplunov
Keele University; Brunel University
Email: j.kaplunov@keele.ac.uk
ORCID iD: 0000-0001-7199-5453
Scopus Author ID: 6701814679
ResearcherId: J-2696-2013
Keele, Staffordshire ST5 5BG, UK
Barbara Zupancic
National Institute of Chemistry
Email: barbara.zupancic@ki.si
ORCID iD: 0000-0001-7296-8086
19 Hajdrihova, Ljubljana 1000, Slovenia
Anatolij V. Nikonov
University of Ljubljana
Author for correspondence.
Email: anatolij.nikonov@fs.uni-lj.si
ORCID iD: 0000-0003-3586-1401
12 Kongresni trg, Ljubljana 1000, Slovenia
References
- Гольденвейзер А. Л. Теория упругих тонких оболочек. Москва : Наука, 1976. 512 с.
- Коссович Л. Ю. Нестационарные задачи теории упругих тонких оболочек. Саратов : Изд-во Саратовского ун-та, 1986. 176 с.
- Kaplunov J. D., Kossovich L. Ju., Nolde E. V. Dynamics of Thin Walled Elastic Bodies. San-Diego : Academic Press, 1998. 226 p. https://doi.org/10.1016/c2009-0-20923-8
- Kaplunov J. D., Kossovich L. Ju., Moukhomodiarov R. R. Impact normal compression of an elastic plate: analysis utilising an advanced asymptotic 2D model // Mechanics Research Communications. 2000. Vol. 27, iss. 1. P. 117–122. https://doi.org/10.1016/S0093-6413(00)00070-7
- Агаловян Л. А. Асимптотическая теория анизотропных пластин и оболочек. Москва : Наука, 1997. 414 с.
- Гольденвейзер А. Л. Общая теория тонких упругих тел (оболочки, покрытия, прокладки) // Известия Российской академии наук. Механика твердого тела. 1992. № 3. С. 5–17.
- Kaplunov J., Prikazchikov D., Sultanova L. Justification and refinement of Winkler – Fuss hypothesis // Zeitschrift fur angewandte Mathematik und Physik. 2018. Vol. 69. Art. 80. https://doi.org/10.1007/s00033-018-0974-1
- Вильде М. В., Каплунов Ю. Д., Коссович Л. Ю. Краевые и интерфейсные резонансные явления в упругих телах. Москва : Физматлит, 2010. 280 с.
- Kaplunov J. D., Kossovich L. Ju., Wilde M. V. Free localized vibrations of a semi-infinite cylindrical shell // The Journal of the Acoustical Society of America. 2000. Vol. 107, iss. 3. P. 1383–1393. https://doi.org/10.1121/1.428426
Supplementary files


