On the iterative method for solution of direct and inverse problems for parabolic equations

Cover Page

Cite item

Full Text

Abstract

The paper is devoted to approximate methods for solution of direct and inverse problems for parabolic equations. An approximate method for the solution of the initial problem for multidimensional nonlinear parabolic equation is proposed. The method is based on the reduction of the  initial problem to a nonlinear multidimensional intergral Fredholm equation of the second kind which is approximated by a system of nonlinear algebraic equations with the help of the method of mechanical quadratures. For constructing the computational scheme we use the nodes of the local splines which realize order-optimal approximation of the functional class that contains solutions of parabolic equations. For implementation of the computational scheme we use the generalization of the continuous method for solution of nonlinear operator equations that is described in the paper. We also analyse the inverse problem for parabolic equation with fractional order derivative with respect to the time variable. The approximate methods for defining the fractional order of the time derivative and the coeffcient at spatial derivative are proposed.

About the authors

Il'ya V. Boykov

Penza State University

ORCID iD: 0000-0002-6980-933X
Scopus Author ID: 7003889712
ResearcherId: B-3817-2014
40 Krasnaya St., Penza 440026, Russia

Vladimir A. Ryazantsev

Penza State University

40 Krasnaya St., Penza 440026, Russia

References

  1. Ladyzenskaja O. A., Solonnikov V. A. Ural’ceva N. N. Linear and Quasi-linear Equations of Parabolic Type. Providence : American Mathematical Society, 1988. 648 p.
  2. Лионс Ж.-Л. Некоторые методы решения нелинейных краевых задач. Москва : Мир, 1972. 588 c.
  3. Морс Ф. М., Фешбах Г. Методы теоретической физики : в 2 т. Т. 2. Москва : Медиа, 2012. 886 с.
  4. Крылов Н. В. Лекции по эллиптическим и параболическим уравнениям в пространствах Гельдера. Новосибирск : Научная книга, 1998. 178 с.
  5. Крылов Н. В. Нелинейные эллиптические и параболические уравнения второго порядка. Москва : Наука, 1985. 376 с.
  6. Корпусов М. О. Конспект лекций по курсу «Нелинейные эллиптические и параболические уравнения математической физики для аспирантов». Москва : Физический факультет МГУ, 2016. 188 с.
  7. Полянин А. Д., Зайцев В. Ф., Журов А. И. Методы решения нелинейных уравнений математической физики и механики. Москва : Физматлит, 2009. 256 с.
  8. Самарский А. А., Вабищевич П. Н. Вычислительная теплопередача. Москва : ЛИБРОКОМ, 2009. 784 с.
  9. Вабищевич П. Н. Вычислительные методы математической физики. Нестационарные задачи. Москва : Вузовская книга, 2008. 228 с.
  10. Kabanikhin S. I. Inverse and ill-posed problems. Theory and Applications. Berlin ; Boston : De Gruyter, 2011. 475 p. https://doi.org/10.1515/9783110224016
  11. Hasanov H. A., Romanov V. G. Introduction to Inverse Problems for Differential Equations. Springer International Publishing AG, 2017. 261 p. https://doi.org/10.1007/978-3-319-62797-7
  12. Денисов А. М. Введение в теорию обратных задач. Москва : Изд-во МГУ, 1994. 206 с.
  13. Beilina L., Klibanov M. V. Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems. New York : Springer, 2012. 408 p. https://doi.org/10.1007/978-1-4419-7805-9
  14. Бойков И. В., Рязанцев В. А. Об одном приближенном методе определения коэффициента теплопроводности // Журнал Средневолжского математического общества. 2019. Т. 21, № 2. С. 149–163. https://doi.org/10.15507/2079-6900.21.201902.149-163
  15. Бойков И. В., Рязанцев В. А. Об одном итерационном методе решения параболических уравнений // Современные проблемы теории функций и их приложения : материалы 21-й междунар. Саратовской зимней школы (Саратов, 31 января – 4 февраля 2022 г.). Саратов : Саратовский университет [Издание], 2022. Вып. 21. С. 50–54. EDN: BVALVE
  16. Daleckii Ju. L., Krein M. G. Stability of Solutions of Differential Equations in Banach Space. Providence : Americal Mathematical Society, 1974. 386 p. (Translations of Mathematical Monographs. Vol. 43).
  17. Dekker K., Verwer J. G. Stability of Runge – Kutta methods for stiff nonlinear differential equations. New York : Elsevier Science Ltd, 1984. 308 p.
  18. Lozinskii S. M. Note on a paper by V. S. Godlevskii // USSR Computational Mathematics and Mathematical Physics. 1973. Vol. 13, iss. 2. P. 232–234. https://doi.org/10.1016/0041-5553(73)90144-4
  19. Kantorovich L. V., Akilov G. P. Functional Analysis. Oxford : Pergamon Press, 1982. 600 p.
  20. Krasnosel’skii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko Ya. V. Approximate Solution of Operator Equations. Groningen : Wolters-Noordhoff Publishing, 1972. 496 p. https://doi.org/10.1007/978-94-010-2715-1
  21. Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы. Москва : Бином. Лаборатория знаний. 2011. 640 с. EDN: QJXMXL
  22. Гавурин М. К. Нелинейные функциональные уравнения и непрерывные аналоги итеративных методов // Известия вузов. Математика. 1958. № 5. С. 18–31.
  23. Пузынин И. В., Бояджиев Т. Л., Виницкий С. И., Земляная Е. В., Пузынина Т. П., Чулуунбаатар О. О методах вычислительной физики для исследования моделей сложных физических процессов // Физика элементарных частиц и атомного ядра. 2007. Т. 38, вып. 1. С. 144–232.
  24. Boikov I. V. On a continuous method for solving nonlinear operator equations // Differential Equations. 2012. Vol. 48, № 9. P. 1288–1295. https://doi.org/10.1134/S001226611209008X
  25. Boikov I. V., Ryazantsev V. A. On Optimal Approximation of Geophysical Fields // Numerical Analysis and Applications. 2021. Vol. 14, iss. 1. P. 13–29. https://doi.org/10.1134/S199542392101002X
  26. Lanczos K. Applied Analysis. New Jersey : Prentice-Hall, Englewood Cliffs, 1956. 539 p.
  27. Бойков И. В., Кривулин Н. П. Аналитические и численные методы идентификации динамических систем. Пенза : Изд-во Пензенского гос. ун-та, 2016. 398 с.
  28. Бойков И. В., Кривулин Н. П. Приближенный метод восстановления входных сигналов измерительных преобразователей // Измерительная техника. 2021. № 12. С. 3–7. https://doi.org/10.32446/0368-1025it.2021-12-3-7, EDN: PVVHQW
  29. Бойков И. В., Рязанцев В. А. Численное восстановление начального условия в задачах Коши для линейных параболических и гиперболических уравнений // Известия высших учебных заведений. Поволжский регион. Физико-математические науки. 2020. № 3 (55). С. 72–88. https://doi.org/10.21685/2072-3040-2020-3-6
  30. Boykov I. V., Ryazantsev V. A. An approximate method for solving an inverse coefficient problem for the heat equation // Journal of Applied and Industrial Mathematics. 2021. Vol. 15, iss. 2. P. 175–189. https://doi.org/10.1134/S1990478921020010
  31. Mainardi F. On the initial value problem for the fractional diffusion-wave equation // Waves and Stability in Continuous Media / ed. by S. Rionero, T. Ruggert. World Scientific, Singapore, 1994. P. 246–251.
  32. Учайкин В. В. Метод дробных производных. Ульяновск : Артишок. 2008. 512 с.
  33. Samko S. G., Kilbas A. A., Marichev O. I. Fractional Integrals and Derivatives. Theory and Applications. Amsterdam : Gordon and Breach Science Publishers, 1993. 1006 p.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies