Study of the influence of various physiologically active substances on changes in the lipid composition and phospholipase activity of damaged somatic nerves
- Authors: Revin V.V.1, Parchaykina M.V.1, Chudaikina E.V.1, Revina E.S.1, Molchanov I.D.1, Simakova M.A.1, Zavarykina A.V.1, Grunyushkin I.P.1, Devyatkin A.А.1
-
Affiliations:
- Ogarev Mordovia State University
- Issue: Vol 24, No 4 (2024)
- Pages: 448-460
- Section: Biology
- URL: https://journals.rcsi.science/1816-9775/article/view/357436
- DOI: https://doi.org/10.18500/1816-9775-2024-24-4-448-460
- EDN: https://elibrary.ru/QJXELD
- ID: 357436
Cite item
Full Text
Abstract
About the authors
Viktor V. Revin
Ogarev Mordovia State University68, Bolshevistskaya Str., Saransk, 430005, Russia
Marina V. Parchaykina
Ogarev Mordovia State University
ORCID iD: 0000-0002-6627-6582
68, Bolshevistskaya Str., Saransk, 430005, Russia
Elena V. Chudaikina
Ogarev Mordovia State University
ORCID iD: 0000-0001-6141-2568
68, Bolshevistskaya Str., Saransk, 430005, Russia
Elvira S. Revina
Ogarev Mordovia State University
ORCID iD: 0000-0002-2418-7012
68, Bolshevistskaya Str., Saransk, 430005, Russia
Ivan D. Molchanov
Ogarev Mordovia State University
ORCID iD: 0009-0007-0996-5588
68, Bolshevistskaya Str., Saransk, 430005, Russia
Milena A. Simakova
Ogarev Mordovia State University
ORCID iD: 0009-0005-3681-1221
68, Bolshevistskaya Str., Saransk, 430005, Russia
Anastasia Vyacheslavovna Zavarykina
Ogarev Mordovia State University430005 Saransk, Russia
Igor P. Grunyushkin
Ogarev Mordovia State University430005 Saransk, Russia
Arkadiy А. Devyatkin
Ogarev Mordovia State University
ORCID iD: 0000-0002-6551-2571
Scopus Author ID: 13613269500
ResearcherId: E-5296-2014
430005 Saransk, Russia
References
- Gordon T. Peripheral nerve regeneration and muscle reinnervation // International Journal of Molecular Sciences. 2020. Vol. 21, iss. 22. P. 8652. https://doi.org/10.3390/ijms21228652
- Nocera G., Jacob C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury // Cellular and Molecular Life Sciences. 2020. Vol. 77. P. 3977–3989. https://doi.org/10.1007/s00018- 020-03516-9
- Mahar M., Cavalli V. Intrinsic mechanisms of neuronal axon regeneration // Nature Reviews Neuroscience. 2018. Vol. 19, iss. 6. P. 323–337. https://doi.org/10.1038/s41583-018-0001-8
- Xu X., Song L., Li Y., Guo J., Huang S., Du S., Li W., Cao R., Cui S. Neurotrophin-3 promotes peripheral nerve regeneration by maintaining a repair state of Schwann cells after chronic denervation via the TrkC/ERK/c-Jun pathway // Journal of Translational Medicine. 2023. Vol. 21, iss. 1. P. 733. https://doi.org/10.1186/s12967-023-04609-2
- Xu Y., Liu X., Ahmad M.A., Ao Q., Yu Y., Shao D., Yu T. Engineering cell-derived extracellular matrix for peripheral nerve regeneration // Materials Today Bio. 2024. Vol. 27. P. 101125. https://doi.org/10.1016/j.mtbio.2024.101125
- Altinkaya A., Cebi G., Tanrıverdi G., Alkan F., Cetinkale O. Effects of subepineural hyaluronic acid injection on nerve recovery in a rat sciatic nerve defect model // Turkish Journal of Trauma & Emergency Surgery. 2023. Vol. 29, iss. 3. P. 277. https://doi.org/10.14744/tjtes.2022.45908.
- Raghu P., Joseph A., Krishnan H., Singh P., Saha S. Phosphoinositides: Regulators of nervous system function in health and disease // Frontiers in Molecular Neuroscience. 2019. Vol. 12. P. 208. https://doi.org/10.3389/fnmol.2019.00208
- González Porto S. A., Domenech N., Blanco F. J., Centeno Cortés A., Rivadulla Fernández C., Álvarez Jorge Á., Sánchez Ibáñez J., Rendal Vázquez E. Intraneural IFG-1 in cryopreserved nerve isografts increase neural regeneration and functional recovery in the rat sciatic nerve // Neurosurgery. 2019. Vol. 85, iss. 3. P. 423–431. https://doi.org/10.1093/neuros/nyy339
- Ma K., Xu H., Zhang J., Zhao F., Liang H., Sun H., Li P., Zhang S., Wang R., Chen X. Insulin-like growth factor-1 enhances neuroprotective effects of neural stem cell exosomes after spinal cord injury via an miR-219a-2-3p/YY1 mechanism // Aging (Albany NY). 2019. Vol. 11, iss. 24. P. 12278. https://doi.org/10.18632/aging.102568
- Ревин В. В. Роль липидов в процессе проведения возбуждения по соматическим нервам : дис. … д-ра биол. наук. Минск, 1990. 364 с.
- Ревин В. В., Ревина Э. С., Девяткин А. А., Громова Н. В. Роль липидов в функционировании возбудимых биологических мембран. Саранск : Изд-во Морд. ун-та, 2012. 220 с.
- Торховская Т. Н., Ипатова О. М., Захарова Т. С., Кочетова М. М., Халилов Э. М. Клеточные рецепторы к лизофосфолипидам как промоторы сигнальных эффектов (обзор) // Биохимия. 2007. Т. 72, № 2. С. 149–158.
- Бердичевец И. Н., Тяжелова Т. В., Шимшилашвили Х. Р., Рогаев Е. И. Лизофосфатидная кислота – липидный медиатор с множеством биологических функций. Пути биосинтеза и механизм действия // Биохимия. 2010. Т. 75, № 9. С. 1213–1223. https://doi.org/10.1134/s0006297910090026
- Brockerhoff S. E. Phosphoinositides and photoreceptors // Molecular Neurobiology. 2011. Vol. 44. P. 420–425. https://doi.org/10.1007/s12035-011- 8208-y
- Bligh E. G., Dyer W. J. A rapid method of total lipid extraction and purifi cation // Canadian Journal of Biochemistry and Physiology. 1959. Vol. 37, iss. 8. P. 911–917. https://doi.org/10.1139/o59-099
- Scharer C. Diplomarbeit Vergleich von HPLC-ELSD und moderener TLC in der heutigen PhospholipidQualiatskontrolle. Basel : Fachhochschule beider, 2001. 48 p.
- Биологические мембраны. Методы / под ред. Дж. Б. Финдлея, У. Г. Эванза. М. : Мир, 1990. 424 с
- Handloser D., Widmer V., Reich E. Separation of phospholipids by HPTLC – an investigation of important parameters // Journal of Liquid Chromatography & Related Technologies. 2008. Iss. 31. P. 1857–1870. https://doi.org/10.1080/10826070802188940
- Morrison W. R., Smith L. M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fl uoride–methanol // Journal of Lipid Research. 1964. Vol. 5, iss. 4. P. 600–608. https://doi.org/10.1016/S0022-2275(20)40190-7
- Ефремова А. С. Участие кальций-независимой фосфолипазы А2 в регуляции Са2+–сигнала, вызванного ингибитором кальмодулина в тимоцитах крысы // Биологические мембраны. 2008. Т. 25, № 4. С. 292–300.
- Mekaj A. Y., Morina A. A., Manxhuka-Kerliu S., Neziri B., Duci S. B., Kukaj V., Miftari I. Electrophysiological and functional evaluation of peroneal nerve regeneration in rabbit following topical hyaluronic acid or tacrolimus application after nerve repair // Nigerian Postgraduate Medical Journal. 2015. Vol. 22, iss. 3. P. 179–184. https://doi.org/10.4103/1117-1936.170738
- Yamahara K., Yamamoto N., Kuwata F., Nakagawa T. Neuroprotective role of insulin-like growth factor 1 in auditory and other nervous systems // Histology and Histopathology. 2022. Vol. 37, iss. 7. P. 609–619. https://doi.org/10.14670/HH-18-437
- Paul J. A., Gregson N. A. An immunohistochemical study of phospholipase A2 in peripheral nerve during Wallerian degeneration // Journal of Neuroimmunology. 1992. Vol. 39, iss. 1-2. P. 31–47. https://doi. org/10.1016/0165-5728(92)90172-h
- Uemura T., Takamatsu K., Ikeda M., Okada M., Kazuki K., Ikada Y., Nakamura H. Transplantation of induced pluripotent stem cell-derived neurospheres for peripheral nerve repair // Biochemical and Biophysical Research Communications. 2012. Vol. 419, iss. 1. P. 130–135. https://doi.org/10.1016/j.bbrc.2012.01.154
- Edström A., Briggman M., Ekström P. A. R. Phospholipase A2 activity is required for regeneration of sensory axons in cultured adult sciatic nerves // Journal of Neuroscience Research. 1996. Vol. 43, iss. 2. P. 183–189. https://doi.org/10.1002/(SICI)1097- 4547(19960115)43:23.0.CO;2-C
- Когтева Г. С., Безуглов В. В. Ненасыщенные жирные кислоты как эндогенные биорегуляторы // Биохимия. 1998. Т. 63, № 1. С. 6–15.
- Архипова С. С. Рагинов И. С., Мухитов А. Р., Челышев Ю. А. Клетки-сателлиты чувствительных нейронов при различных типах травм седалищного нерва крысы // Морфология. 2009. Т. 135, № 3. С. 29–34.
- Iwanicki J. L., Lu K. W., Taeusch H. W. Reductions of phospholipase A2 inhibition of pulmonary surfactant with hyaluronan // Experimental Lung Research. 2010. Vol. 36, iss. 3. P. 167–174. https://doi. org/10.3109/01902140903234186
- Nitzan D. W., Nitzan U., Dan P., Yedgar S. The role of hyaluronic acid in protecting surface-active phospholipids from lysis by exogenous phospholipase A2 // Rheumatology. 2001. Vol. 40, iss. 3. P. 336–340. https://doi.org/10.1093/rheumatology/40.3.336
- Кузьменко Т. П., Парчайкина М. В., Ревина Э. С., Гладышева М. Ю., Ревин В. В. Влияние нейротрофических факторов на состав белков при повреждении и регенерации соматических нервов // Биофизика. 2023. Т. 68, № 2. С. 334–348. https://doi. org/10.31857/S0006302923020138
- Rajala A., Teel K., Bhat M. A., Batushansky A., Griffi n T. M., Purcell L., Rajala R. V. Insulin-like growth factor 1 receptor mediates photoreceptor neuroprotection // Cell Death & Disease. 2022. Vol. 13, iss. 7. P. 613. https://doi.org/10.1038/s41419- 022-05074-3
- de Figueiredo C. S., Raony Í., Medina S.V., de Mello Silva E., Dos Santos A. A., Giestal-de-Araujo E. Insulin-like growth factor-1 stimulates retinal cell proliferation via activation of multiple signaling pathways // Current Research in Neurobiology. 2023. Vol. 4. P. 100068. https://doi.org/10.1016/j.crneur.2022.100068
- Kermer P., Klöcker N., Labes M., Bähr M. Insulinlike growth factor-I protects axotomized rat retinal ganglion cells from secondary death via PI3-Kdependent Akt phosphorylation and inhibition of caspase-3 in vivo // Journal of Neuroscience. 2000. Vol. 20, iss. 2. P. 722–728. https://doi.org/10.1523/jneurosci.20-02-00722.2000
Supplementary files

