Grafting of acrylic monomers onto polyethylene surface (review)

Cover Page

Cite item

Full Text

Abstract

A search and review of English-language scientifi c literature about the graft copolymerization of acrylic monomers onto a solid-phase polymeric surface has been carried out. Grafting onto plates and fi lms of high- and low-density polyethylene is considered. The monomers used were acrylic and methacrylic acids, glycidyl acrylate and glycidyl methacrylate, etc., and the main method was UV photopolymerization with an initiator – benzophenone, etc. Problems of graft polymerization in terms of surface modifi cation of polymeric materials are touched upon, and possible areas of their application are outlined.

About the authors

Telman А. Bayburdov

Saratov State University

83, Astrakhanskaya str., Saratov, 410012, Russia

Sergei L. Shmakov

Saratov State University

83, Astrakhanskaya str., Saratov, 410012, Russia

References

  1. Kato K., Uchida E., Kang E.-T., Uyama Y., Ikada Y. Polymer surface with graft chains. Prog. Polym. Sci., 2003, vol. 28, pp. 209–259.
  2. Wang H. Improving the Adhesion of Polyethylene by UV Grafting. The Journal of Adhesion, 2006, vol. 82, pp. 731–745. https://doi.org/10.1080/00218460600775815
  3. Kochkodan V. M., Sharma V. K. Graft polymerization and plasma treatment of polymer membranes for fouling reduction: A review. Journal of Environmental Science and Health, Part A, 2012, vol. 47, pp. 1713–1727.
  4. Wang S., Wang Z., Li J., Li L., Hu W. Surface-grafting polymers: From chemistry to organic electronics. Mater. Chem. Front., 2020, vol. 4, pp. 692–714. https://doi.org/10.1039/c9qm00450e
  5. Tazuke S., Matoba T., Kimura H., Okada T. A Novel modifi cation of polymer surfaces by photografting. ACS Symp. Ser., 1980, vol. 121, pp. 217–241.
  6. Ogiwara Y., Torikmhi K., Kubota H. Vapor phase photografting of acrylic acid on polymer fi lms: Effects of solvent mixed with monomer. J. Polym. Sci. PoZym. Lett. Ed., 1982, vol. 20, pp. 17–21.
  7. Rånby B., Gao Z. M., Hult A., Zhang P. Y. Modifi cation of polymer surfaces by photoinduced graft copolymerization. ACS Symp. Ser., Chemical Reactions on Polymers, 1988, chapter 13, pp. 168–186.
  8. Allmér K., Hult A., Rånby B. Surface Modifi cation of polymers. I. Vapour phase photografting with acrylic acid. Journal of Polymer Science: Part A: Polymer Chemistry, 1988, vol. 26, pp. 2099–2111.
  9. Zhang P. Y., Rånby B. Surface modifi cation by continuous graft copolymerization. I. Photoinitiated graft copolymerization onto polyethylene tape fi lm surface. Journal of Applied Polymer Science, 1990, vol. 40, pp. 1647–1661.
  10. Kubota H., Koyama M. Photografting of methacrylic acid on low-density polyethylene film in presence of polyfunctional monomers. J. Appl. Polym. Sci., 1997, vol. 63, pp. 1635–1641.
  11. Yang W. T., Rеnby B. Photoinitiation performance of some ketones in the LDPE-acrylic acid surface photografting system. Eur. Polym. J., 1999, vol. 35, pp. 1557–1568.
  12. Han J., Wang H. Photografting of acrylic acid and methacrylic acid onto polyolefi nes initiated by formaldehyde in aqueous solutions. J. Appl. Polym. Sci., 2009, vol. 113, pp. 2062–2071. https://doi.org/10.1002/ app.29938
  13. Song A., Zhao D., Rong R., Zhang L., Wang H. Photografting of methacrylic acid onto HDPE initiated by acetaldehyde in aqueous solutions. J. Appl. Polym. Sci., 2011, vol. 119, pp. 629–635. https://doi.org/10.1002/ app.32683
  14. Kondo T., Koyama M., Kubota H., Katakai R. Characteristics of acrylic acid and N-isopropylacrylamide binary monomers-grafted polyethylene fi lm synthesized by photografting. J. Appl. Polym. Sci., 1998, vol. 67, pp. 2057–2064.
  15. Wang H., Brown H. R. Self-initiated photopolymerization and photografting of acrylic monomers. Macromol. Rapid Commun., 2004, vol. 25, pp. 1095–1099. https://doi.org/10.1002/marc.200400010
  16. Liqun Z., Irwan G. S., Kondo T., Kutota H. Acetoneinitiated photografting of methacrylic acid on lowdensity polyethylene film in water solvent. Eur. Polym. J., 2000, vol. 36, pp. 1591–1595.
  17. Irwan G. S., Kuroda S.-I., Kubota H., Kondo T. Examination of the role of oxygen in the photografting of methacrylic acid on a polyethylene film with a mixed solvent consisting of water and organic solvents. J. Appl. Polym. Sci., 2003, vol. 89, pp. 992–998.
  18. Wang H., Brown H.R. Ultraviolet grafting of methacrylic acid and acrylic acid on high-density polyethylene in different solvents and the wettability of grafted high-density polyethylene. I. Grafting. II. Wettability. J. Polym. Sci.: Part A: Polym. Chem., 2004, vol. 42, pp. 253–262, 263–270.
  19. Wang H., Brown H. R., Li Z. Aliphatic ketones/water/ alcohol as a new photoinitiating system for the photografting of methacrylic acid onto high-density polyethylene. Polymer, 2007, vol. 48, pp. 939–948.
  20. Wang H.L., Brown H.R. Lamination of High-Density Polyethylene by Bulk Photografting and the Mechanism of Adhesion. J. Appl. Polym. Sci., 2005, vol. 97, pp. 1097–1106.
  21. Costamagna V., Wunderlin D., Larranˇaga M., Mondragon I., Strumia M. Surface functionalization of polyolefin films via the ultraviolet-induced photografting of acrylic acid: Topographical characterization and ability for binding antifungal agents. J. Appl. Polym. Sci., 2006, vol. 102, pp. 2254–2263.
  22. Han J., Wang X., Wang H. Superhydrophobic surface fabricated by bulk photografting of acrylic acid onto high-density polyethylene. Journal of Colloid and Interface Science, 2008, vol. 326, pp. 360–365. https:// doi.org/10.1016/j.jcis.2008.06.023
  23. Allmér K., Hult A., Rånby B. Surface Modifi cation of Polymers. II. Grafting with Glycidyl Acrylates and the Reactions of the Grafted Surfaces with Amines. J. Polym. Sci.: Part A: Polym. Chem., 1989, vol. 27, pp. 1641–1652.
  24. Allmér K., Hult A., Rånby B. Surface Modifi cation of Polymers. III. Grafting of Stabilizers onto Polymer Films. J. Polym. Sci.: Part A: Polym. Chem., 1989, vol. 27, pp. 3405–3417.
  25. Allmér K., Hult A., Rånby B. Surface Modifi cation of Polymers. IV. UV Initiated Degradation of Polymers with Stabilizers Grafted onto the Surface. J. Polym. Sci.: Part A: Polym. Chem., 1989, vol. 27, pp. 3419–3427.
  26. Allmér K., Hilborn J., Larsson P. H., Hult A., Rånby B. Surface Modifi cation of Polymers. V. Biomaterial Applications. J. Polym. Sci.: Part A: Polym. Chem., 1990, vol. 28, pp. 173–183.
  27. Zhang J., Kato K., Uyama Y., Ikada Y. Surface graft polymerization of glycidyl methacrylate onto polyethylene and the adhesion with epoxy resin. J. Polym. Sci.: Part A: Polym. Chem., 1995, vol. 33, pp. 2629–2638.
  28. Irwan G.S., Kuroda S.-I., Kubota H., Kondo T. Photografting of N-isopropylacrylamide on polyethylene film in mixed solvents composed of water and organic solvent. J. Appl. Polym. Sci., 2003, vol. 87, pp. 458–463.
  29. Irwan G. S., Kuroda S.-I., Kubota H., Kondo T. Effect of mixed solvent consisting of water and organic solvent on photografting of glycidyl methacrylate on polyethylene film. J. Appl. Polym. Sci., 2004, vol. 93, pp. 994–1000.
  30. Tsuneda S., Endo T., Saito K., Sugita K., Horie K., Yamashita T., Sugo T. Fluorescence study on the conformational change of an amino group-containing polymer chain grafted onto a polyethylene microfi ltration membrane. Macromolecules, 1998, vol. 31, pp. 366–370.
  31. Irwan G. S., Aoyama Y., Kuroda S.-I., Kubota H., Kondo T. Photografting of N-isopropylacrylamide and glycidyl methacrylate binary monomers on polyethylene film: Effect of mixed solvent consisting of water and organic solvent. J. Appl. Polym. Sci., 2005, vol. 97, pp. 2469–2475.
  32. Wang H., Brown H. R. Atomic force microscopy study of the photografting of glycidyl methacrylate onto HDPE and the microstructure of the grafted chains. Polymer, 2007, vol. 48, pp. 477–487.
  33. Yamada K., Takeda S., Hirata M. Improvement of Autohesive and Adhesive Properties of Polyethylene Plates by Photografting with Glycidyl Methacrylate. J. Appl. Polym. Sci., 2007, vol. 103, pp. 493–500. https://doi.org/10.1002/app.25076
  34. Edge S., Walker S., Feast W. J., Pacynko W. F. Surface modifi cation of polyethylene by photochemical grafting with 2-hydroxyethyl-methacrylate. J. Appl. Polym. Sci., 1993, vol. 47, pp. 1075–1082.
  35. Tretinnikov O.N., Kato K., Ikada Y. In vitro hydroxyapatite deposition onto a fi lm surface-grafted with organophosphate polymer. J. Biomed. Mater. Res., 1994, vol. 28, pp. 1365–1373.
  36. Amornsakchai T., Kubota H. Photoinitiated grafting of methylmethacrylate on highly oriented polyethylene: Effect of draw ratio on grafting. J. Appl. Polym. Sci., 1998, vol. 70, pp. 465–470.
  37. Geuskens G., Etoc A., Michele P. D. Surface modifi cation of polymers. VII. Photochemical grafting of acrylamide and N-isopropylacrylamide onto polyethylene initiated by anthraquinone-2-sulfonate adsorbed at the surface of the polymer. Eur. Polym. J., 2000, vol. 36, pp. 265–271.
  38. Wang T., Kang E. T., Neoh K. G., Tan K. L., Liaw D. J. Surface modifi cation of low-density polyethylene fi lms by UV-induced graft copolymerization and its relevance to photolamination. Langmuir, 1998, vol. 14, no. 4, pp. 921–927.
  39. Ishihara K., Lee I. Y., Ebihara S., Shindo Y., Nakabayashi N. Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance. Colloids Surf. B Biointerf., 2000, vol. 18, pp. 325–335.
  40. Wu J. Z., Kang E. T., Neoh K. G., Wu P.-L., Liaw D. J. Surface modification of low-density polyethylene fi lms by UV-induced graft copolymerization with a fl uorescent monomer. J. Appl. Polym. Sci., 2001, vol. 80, pp. 1526–1534.
  41. Yamada K., Taki T., Sato K., Hirata M. Electrotransport of organic electrolytes through 2-(dimethylamino) ethylmethacrylate-grafted polyethylene fi lms and their separation and concentration. J. Appl. Polym. Sci., 2003, vol. 89, pp. 2535–2544.
  42. Shimada S., Takahasi Y., Sugino Y., Hara S., Yamanoto K. Autonomic healing of a pinhole in polyethylene and photografted polyethylene-g-poly(hexyl methacrylate) fi lms. J. Polym. Sci. Part B: Polym. Phys., 2004, vol. 42, pp. 1705–1714.
  43. Yang P., Deng J. Y., Yang W. T. Surface photografting polymerization of methyl methacrylate in N,N-dimethylformamide on low density polyethylene film. Macromol. Chem. Phys., 2004, vol. 205, pp. 1096–1102.
  44. Wang L. F., Yu Y. B., Liu L. Y., Yang W. T. Surface photografting polymerization of trimethylolpropane triacrylate onto ПЭНП substrate in tetrahydrofuran/ water mixtures. J. Appl. Polym. Sci., 2007, vol. 106, pp. 621–629.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».