Determination of the absorption coefficient from discrete data

Cover Page

Cite item

Full Text

Abstract

Subject of research: inverse problems concerning the determination of an absorption coefficient in a parabolic equation from discrete (pointwise) data.

Purpose of research: establishing the well-posedness of the problem of determining the lower-order coefficient in a parabolic equation from pointwise overdetermination conditions; proving the existence and uniqueness of a solution in Sobolev spaces.

Research methods: a priori estimates, Schauder’s fixed-point theorem, and the theory of parabolic operators.

Objects of research: parabolic equations with an unknown absorption coefficient represented as a linear combination of known functions with unknown coefficients.

Research findings: a theorem on the existence and uniqueness of solutions in Sobolev spaces is proven, and a priori estimates are derived. The method is constructive and can serve as a foundation for developing a numerical algorithm for the approximate solution of the inverse problem.

Full Text

ВВЕДЕНИЕ

Мы исследуем обратные задачи об определении неизвестного коэффициента поглощения MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@  младшего коэффициента в параболическом уравнении вида

Lu+gt,xu=utL0u+gt,xu=ft,x,    t,xQ=0,T×G,(1)

где L 0 u= i,j=1 n a ij t,x u x i x j i=1 n a i t,x u x i a 0 t,x u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaWG1bGaeyyp a0Zaaubmaeqal8aabaWdbiaadMgacaGGSaGaamOAaiabg2da9iaaig daa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGaaeydGiaadgga paWaaSbaaSqaa8qacaWGPbGaamOAaaWdaeqaaOWdbmaabmaapaqaa8 qacaWG0bGaaiilaiaadIhaaiaawIcacaGLPaaacaWG1bWdamaaBaaa leaapeGaamiEa8aadaWgaaadbaWdbiaadMgaa8aabeaal8qacaWG4b WdamaaBaaameaapeGaamOAaaWdaeqaaaWcbeaak8qacqGHsisldaqf WaqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbiaad6gaa0 WdaeaapeGaeyyeIuoaaOGaaeydGiaadggapaWaaSbaaSqaa8qacaWG PbaapaqabaGcpeWaaeWaa8aabaWdbiaadshacaGGSaGaamiEaaGaay jkaiaawMcaaiaadwhapaWaaSbaaSqaa8qacaWG4bWdamaaBaaameaa peGaamyAaaWdaeqaaaWcbeaak8qacqGHsislcaWGHbWdamaaBaaale aapeGaaGimaaWdaeqaaOWdbmaabmaapaqaa8qacaWG0bGaaiilaiaa dIhaaiaawIcacaGLPaaacaWG1baaaa@6A42@ ***TRANSLATION ERROR***, G   n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raiaacckacqGHckcZcaqGGcWefv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiuaacqWFDeIupaWaaWbaaSqabeaapeGaamOBaa aaaaa@4713@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@  ограниченная область с границей Γ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Kdaaa@3726@ . Функция g имеет вид g t,x = i=1 r   α i Φ i t,x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4zamaabmaapaqaa8qacaWG0bGaaiilaiaadIhaaiaawIcacaGL PaaacqGH9aqpdaqfWaqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8 aabaWdbiaadkhaa0WdaeaapeGaeyyeIuoaaOGaaeydGiaabccacqaH XoqypaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeuOPdy0damaaBa aaleaapeGaamyAaaWdaeqaaOWdbmaabmaapaqaa8qacaWG0bGaaiil aiaadIhaaiaawIcacaGLPaaaaaa@4DE1@ , где αi MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@  неизвестные постоянные и {Фi } MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@  некоторый набор линейно независимых функций. Уравнение (1) дополняется начально-краевыми условиями:

Bu | S = g 0 t,x      S= 0,T ×Γ ,    u | t=0 = u 0 x , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiaadwhacaGG8bWdamaaBaaaleaapeGaam4uaaWdaeqaaOWd biabg2da9iaadEgapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeWaae Waa8aabaWdbiaadshacaGGSaGaamiEaaGaayjkaiaawMcaaiaabcka caqGGcGaaeiOaiaabckadaqadaWdaeaapeGaam4uaiabg2da9maabm aapaqaa8qacaaIWaGaaiilaiaadsfaaiaawIcacaGLPaaacqGHxdaT caqGtoaacaGLOaGaayzkaaGaaiilaiaabckacaqGGcGaaeiOaiaabc kacaWG1bGaaiiFa8aadaWgaaWcbaWdbiaadshacqGH9aqpcaaIWaaa paqabaGcpeGaeyypa0JaamyDa8aadaWgaaWcbaWdbiaaicdaa8aabe aak8qadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaiaacYcaaaa@619B@  (2)

где Bu= i=1 n γ i t,x u x i +σ t,x u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiaadwhacqGH9aqpdaqfWaqabSWdaeaapeGaamyAaiabg2da 9iaaigdaa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGaaeydGi abeo7aN9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qadaqadaWdaeaa peGaamiDaiaacYcacaWG4baacaGLOaGaayzkaaWaaSaaa8aabaWdbi abgkGi2kaadwhaa8aabaWdbiabgkGi2kaadIhapaWaaSbaaSqaa8qa caWGPbaapaqabaaaaOWdbiabgUcaRiabeo8aZnaabmaapaqaa8qaca WG0bGaaiilaiaadIhaaiaawIcacaGLPaaacaWG1baaaa@554D@ или Bu=u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiaadwhacqGH9aqpcaWG1baaaa@39CE@  и γ t,x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gafq4SdC2dayaalaWdbmaabmaapaqaa8qacaWG0bGaaiilaiaadIha aiaawIcacaGLPaaaaaa@3C33@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@  некасательное к Γ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Kdaaa@3726@  векторное поле, направленное вне области G MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raaaa@36D9@  и условиями переопределения,

u t i , y i = ψ i ,  i=1,2,,r, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDamaabmaapaqaa8qacaWG0bWdamaaBaaaleaapeGaamyAaaWd aeqaaOWdbiaacYcacaWG5bWdamaaBaaaleaapeGaamyAaaWdaeqaaa GcpeGaayjkaiaawMcaaiabg2da9iabeI8a59aadaWgaaWcbaWdbiaa dMgaa8aabeaak8qacaGGSaGaaeiOaiaabckacaWGPbGaeyypa0JaaG ymaiaacYcacaaIYaGaaiilaiabgAci8kaacYcacaWGYbGaaiilaaaa @4DF6@  (3)

где t i , y i Q ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadshapaWaaSbaaSqaa8qacaWGPbaapaqabaGc peGaaiilaiaadMhapaWaaSbaaSqaa8qacaWGPbaapaqabaaak8qaca GLOaGaayzkaaGaeyicI4Sabmyua8aagaqeaaaa@3FA1@ , y i G MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGHiiIZcaWG hbaaaa@3ABD@ , 0< t i T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgYda8iaadshapaWaaSbaaSqaa8qacaWGPbaapaqabaGc peGaeyizImQaamivaaaa@3CB4@  ( i=1,2,,r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacqGHMacVcaGG SaGaamOCaaaa@3E0D@  ). Задача состоит в нахождении решения уравнения (1), удовлетворяющего условиям (2) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ (3) и неизвестных параметров αi, функции Фi считаются заданными.

Коэффициентные обратные задачи являются классическими. Они возникают в самых различных задачах математической физики: описание различных процессов тепломассопереноса [1] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ [4], фильтрации, экологии (определение потоков парниковых газов [5] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ [7], описание процессов поглощения метана в почвах [8] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ [10] и др.). В частности, в работах [8] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ [10] функция g = g(x) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@  скорость поглощения метана в почвах. Соответствующая модель предложена в работе [8]. В работах [9], [10] рассмотрен вопрос о численном определении скорости поглощения в стационарном случае. Отметим, что изучение величин потребления (удельных потоков) CH4, понимание процессов, обусловливающих его временную и пространственную динамику, а также моделирование потребления необходимы для построения обоснованных климатических прогнозов. Как известно, потребление метана в почве за счет окисления метанотрофными бактериями в автоморфных почвах MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@  единственный известный биологический механизм стока для атмосферного метана [11].

В настоящее время имеется большое количество работ, посвященных исследованию обратных задач об определении младшего коэффициента в параболическом уравнении в различных постановках, возникающих в приложениях. Прежде всего отметим работу [12], где рассмотрена задача об определении коэффициента g = g(x) по условию финального переопределения, т. е. условие (3) заменяется на условие u T,x =φ x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDamaabmaapaqaa8qacaWGubGaaiilaiaadIhaaiaawIcacaGL PaaacqGH9aqpcqaHgpGAdaqadaWdaeaapeGaamiEaaGaayjkaiaawM caaaaa@409D@ . Эта задача совпадает с классической задачей управления: перевести систему из заданного состояния u0 в состояние u(T,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaabaaaaaaaaapeGaamyDa8aa caGGOaWdbiaadsfacaGGSaGaamiEa8aacaGGPaaaaa@468C@  за счет изменения параметров системы. В этой работе получена теорема существования и единственности классических решений задачи. Доказательства основаны на принципе максимума, и коэффициент g ищется знакоопределенным. Эти результаты также изложены в монографии [4]. Теорема существования и единственности решений задачи об определении коэффициента g = g(x) в случае финального переопределения имеется также в работе [15] (см. также [14]). В работе [16] требуется выполнение некоторых неравенств, связывающих между собой нормы данных, фактически эти условия MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@  условия малости данных. Аналогичные условия требуются и в работе [17], где коэффициент g ищется в виде g t,x = i=1 r g i Φ i x i t,x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4zamaabmaapaqaa8qacaWG0bGaaiilaiaadIhaaiaawIcacaGL PaaacqGH9aqpdaqfWaqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8 aabaWdbiaadkhaa0WdaeaapeGaeyyeIuoaaOGaae4zamaaBaaaleaa caWGPbaabeaakiabfA6agnaaBaaaleaacaWGPbaabeaakmaabmaapa qaa8qacaWG4baacaGLOaGaayzkaaWdamaaBaaaleaapeGaamyAaaWd aeqaaOWdbmaabmaapaqaa8qacaWG0bGaaiilaiaadIhaaiaawIcaca GLPaaaaaa@4F64@  с неизвестными функциями gi(x) и дополнительно задаются значения решения u(ti,x) в некотором наборе точек t = ti ) i = 1,…,r). Здесь также получены теоремы существования и единственности решений. В работе [18] рассматривается одномерная задача, где коэффициент g(x) определяется по данным Коши на боковой стороне прямоугольника. Отметим также работы [19, 13], [20], где рассматриваются вопросы корректности задачи определения функции g(x) с использованием интегральных условий переопределения. Гораздо больше работ посвящено определению младшего коэффициента g, зависящего от времени. Мы сошлемся только на работы [21] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ [24], где можно найти библиографию. Сошлемся на работы [25] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ [26], где коэффициент g = (t) определяется численно, хотя можно отметить, что таких работ очень много. Условия переопределения вида (3) использовались в ряде работ для определения различных параметров в уравнении (см., например, [27]).

Мы не нашли теоретических результатов, посвященных задаче (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ (3), в литературе. Наши результаты наиболее близки к результатам работы [17]. В работе основное внимание посвящено условиям существования решения задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ (3) в классах Соболева. Полученные результаты допускают обобщение в том числе и на квазилинейный случай и могут послужить основой для создания численного алгоритма.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Определения и вспомогательные результаты. Пусть E MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyraaaa@36D7@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@  банахово пространство. Через L p G;E MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiaadchaa8aabeaak8qadaqadaWdaeaa peGaam4raiaacUdacaWGfbaacaGLOaGaayzkaaaaaa@3C44@  ( G MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raaaa@36D9@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@  область в n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaaeaaaaaaaaa8qacqWFDeIu paWaaWbaaSqabeaapeGaamOBaaaaaaa@4204@  ) обозначается пространство сильно измеримых функций, определенных на G MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raaaa@36D9@  со значениями в E MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyraaaa@36D7@  и конечной нормой u x E L p G MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeSyjIaLaeSyjIaLaamyDamaabmaapaqaa8qacaWG4baacaGLOaGa ayzkaaGaeSyjIa1damaaBaaaleaapeGaamyraaWdaeqaaOWdbiablw Iiq9aadaWgaaWcbaWdbiaadYeapaWaaSbaaWqaa8qacaWGWbaapaqa baWcpeWaaeWaa8aabaWdbiaadEeaaiaawIcacaGLPaaaa8aabeaaaa a@4494@  [28]. Обозначения для пространств Соболева W p s G;E MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaqhaaWcbaWdbiaadchaa8aabaWdbiaadohaaaGcdaqa daWdaeaapeGaam4raiaacUdacaWGfbaacaGLOaGaayzkaaaaaa@3D48@ , W p s Q;E MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaqhaaWcbaWdbiaadchaa8aabaWdbiaadohaaaGcdaqa daWdaeaapeGaamyuaiaacUdacaWGfbaacaGLOaGaayzkaaaaaa@3D52@  и т. д. стандартные (см. [28], [34]). Если E= MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyraiabg2da9mrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D VbacfaGae8xhHifaaa@4295@  или E= n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyraiabg2da9mrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D VbacfaGae8xhHi1damaaCaaaleqabaWdbiaad6gaaaaaaa@43D4@ , то последнее пространство обозначаем просто через W p s Q MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaqhaaWcbaWdbiaadchaa8aabaWdbiaadohaaaGcdaqa daWdaeaapeGaamyuaaGaayjkaiaawMcaaaaa@3BC9@ . Определения пространств Гельдера C α,β Q ¯ , C α,β S ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaahaaWcbeqaa8qacqaHXoqycaGGSaGaeqOSdigaaOWa aeWaa8aabaWdbiqadgfapaGbaebaa8qacaGLOaGaayzkaaGaaiilai aadoeapaWaaWbaaSqabeaapeGaeqySdeMaaiilaiabek7aIbaakmaa bmaapaqaa8qaceWGtbWdayaaraaapeGaayjkaiaawMcaaaaa@4645@  могут быть найдены, например, в [29]. Все рассматриваемые пространства и коэффициенты уравнения (1) мы считаем вещественными. Под нормой вектор-функции понимаем сумму норм координат. Для данного интервала J= 0,T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOsaiabg2da9maabmaapaqaa8qacaaIWaGaaiilaiaadsfaaiaa wIcacaGLPaaaaaa@3BCD@  положим W p s,r Q = W p s J; L p G L p J; W p r G MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaqhaaWcbaWdbiaadchaa8aabaWdbiaadohacaGGSaGa amOCaaaakmaabmaapaqaa8qacaWGrbaacaGLOaGaayzkaaGaeyypa0 Jaam4va8aadaqhaaWcbaWdbiaadchaa8aabaWdbiaadohaaaGcdaqa daWdaeaapeGaamOsaiaacUdacaWGmbWdamaaBaaaleaapeGaamiCaa WdaeqaaOWdbmaabmaapaqaa8qacaWGhbaacaGLOaGaayzkaaaacaGL OaGaayzkaaGaeyykICSaamita8aadaWgaaWcbaWdbiaadchaa8aabe aak8qadaqadaWdaeaapeGaamOsaiaacUdacaWGxbWdamaaDaaaleaa peGaamiCaaWdaeaapeGaamOCaaaakmaabmaapaqaa8qacaWGhbaaca GLOaGaayzkaaaacaGLOaGaayzkaaaaaa@5657@ . Соответственно, W p s,r S = W p s J; L p Γ L p J; W p r Γ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaqhaaWcbaWdbiaadchaa8aabaWdbiaadohacaGGSaGa amOCaaaakmaabmaapaqaa8qacaWGtbaacaGLOaGaayzkaaGaeyypa0 Jaam4va8aadaqhaaWcbaWdbiaadchaa8aabaWdbiaadohaaaGcdaqa daWdaeaapeGaamOsaiaacUdacaWGmbWdamaaBaaaleaapeGaamiCaa WdaeqaaOWdbmaabmaapaqaa8qacaqGtoaacaGLOaGaayzkaaaacaGL OaGaayzkaaGaeyykICSaamita8aadaWgaaWcbaWdbiaadchaa8aabe aak8qadaqadaWdaeaapeGaamOsaiaacUdacaWGxbWdamaaDaaaleaa peGaamiCaaWdaeaapeGaamOCaaaakmaabmaapaqaa8qacaqGtoaaca GLOaGaayzkaaaacaGLOaGaayzkaaaaaa@56F3@ . Пусть u,v = G u x v x dx MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadwhacaGGSaGaamODaaGaayjkaiaawMcaaiab g2da9maavababeWcpaqaa8qacaWGhbaabeqdpaqaa8qacqGHRiI8aa GccaqGnaIaamyDamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGa amODamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaamizaiaadI haaaa@485A@ ***TRANSLATION ERROR***. Определение границы класса C s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaahaaWcbeqaa8qacaWGZbaaaaaa@3819@ , s1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4CaiabgwMiZkaaigdaaaa@3986@  имеется в [29, гл. 1]. Рассматривая задачу (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ (3), мы предполагаем, что Γ C 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4KdiabgIGiolaadoeapaWaaWbaaSqabeaapeGaaGOmaaaaaaa@3A7A@ .

Оператор L 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@37F2@  считается эллиптическим, т. е. для некоторой постоянной δ 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg6da+iaa icdaaaa@3AA2@  выполнено неравенство

i,j=1 n a ij ξ i ξ j δ 0 |ξ | 2   ξ n ,   t,x Q. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadMgacaGGSaGaamOAaiabg2da9iaaigda a8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGaaeydGiaadggapa WaaSbaaSqaa8qacaWGPbGaamOAaaWdaeqaaOWdbiabe67a49aadaWg aaWcbaWdbiaadMgaa8aabeaak8qacqaH+oaEpaWaaSbaaSqaa8qaca WGQbaapaqabaGcpeGaeyyzImRaeqiTdq2damaaBaaaleaapeGaaGim aaWdaeqaaOWdbiaacYhacqaH+oaEcaGG8bWdamaaCaaaleqabaWdbi aaikdaaaGccaqGGcGaaeiOaiabgcGiIiabe67a4jabgIGioprr1ngB PrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1damaaCa aaleqabaWdbiaad6gaaaGccaGGSaGaaeiOaiaabckacqGHaiIidaqa daWdaeaapeGaamiDaiaacYcacaWG4baacaGLOaGaayzkaaGaeyicI4 Saamyuaiaac6caaaa@6F1D@

Приведем условия на исходные данные. Считаем, что выполнены условия

a i L q Q   q>n+2 ,   a kl C Q ¯ ,  σ, γ k W q 0 s 0 ,2 s 0 S ,   a 0 L p Q , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGHiiIZcaWG mbWdamaaBaaaleaapeGaamyCaaWdaeqaaOWdbmaabmaapaqaa8qaca WGrbaacaGLOaGaayzkaaGaaeiOamaabmaapaqaa8qacaWGXbGaeyOp a4JaamOBaiabgUcaRiaaikdaaiaawIcacaGLPaaacaGGSaGaaeiOai aabckacaWGHbWdamaaBaaaleaapeGaam4AaiaadYgaa8aabeaak8qa cqGHiiIZcaWGdbWaaeWaa8aabaWdbiqadgfapaGbaebaa8qacaGLOa GaayzkaaGaaiilaiaabckacaqGGcGaeq4WdmNaaiilaiabeo7aN9aa daWgaaWcbaWdbiaadUgaa8aabeaak8qacqGHiiIZcaWGxbWdamaaDa aaleaapeGaamyCa8aadaWgaaadbaWdbiaaicdaa8aabeaaaSqaa8qa caWGZbWdamaaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacaaIYa Gaam4Ca8aadaWgaaadbaWdbiaaicdaa8aabeaaaaGcpeWaaeWaa8aa baWdbiaadofaaiaawIcacaGLPaaacaGGSaGaaeiOaiaabckacaWGHb WdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgIGiolaadYeapaWa aSbaaSqaa8qacaWGWbaapaqabaGcpeWaaeWaa8aabaWdbiaadgfaai aawIcacaGLPaaacaGGSaaaaa@7295@  (4)

где

q 0 >2 n+1 p/ p1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH+aGpcaaI YaWaaeWaa8aabaWdbiaad6gacqGHRaWkcaaIXaaacaGLOaGaayzkaa GaamiCaiaac+cadaqadaWdaeaapeGaamiCaiabgkHiTiaaigdaaiaa wIcacaGLPaaaaaa@441A@ , p> n+2 /2,   s 0 =1/21/2p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiabg6da+maabmaapaqaa8qacaWGUbGaey4kaSIaaGOmaaGa ayjkaiaawMcaaiaac+cacaaIYaGaaiilaiaabckacaqGGcGaam4Ca8 aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcaaIXaGaai4l aiaaikdacqGHsislcaaIXaGaai4laiaaikdacaWGWbaaaa@4A0A@ , i=1,n,  k,l=1,,n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabg2da9iaaigdacqGHMacVcaGGSaGaamOBaiaacYcacaqG GcGaaeiOaiaadUgacaGGSaGaamiBaiabg2da9iaaigdacaGGSaGaey OjGWRaaiilaiaad6gaaaa@4716@ ;

u 0 x W p 2 2 p G ,  f L p Q , Φ i t,x L p Q ,  i=1,,r,   g 0 W p k 0 ,2 k 0 S , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qadaqadaWdaeaa peGaamiEaaGaayjkaiaawMcaaiabgIGiolaadEfapaWaa0baaSqaa8 qacaWGWbaapaqaa8qacaaIYaGaeyOeI0YaaSaaa8aabaWdbiaaikda a8aabaWdbiaadchaaaaaaOWaaeWaa8aabaWdbiaadEeaaiaawIcaca GLPaaacaGGSaGaaeiOaiaabckacaWGMbGaeyicI4Saamita8aadaWg aaWcbaWdbiaadchaa8aabeaak8qadaqadaWdaeaapeGaamyuaaGaay jkaiaawMcaaiaacYcacaqGMoWdamaaBaaaleaapeGaamyAaaWdaeqa aOWdbmaabmaapaqaa8qacaWG0bGaaiilaiaadIhaaiaawIcacaGLPa aacqGHiiIZcaWGmbWdamaaBaaaleaapeGaamiCaaWdaeqaaOWdbmaa bmaapaqaa8qacaWGrbaacaGLOaGaayzkaaGaaiilaiaabckacaqGGc GaamyAaiabg2da9iaaigdacaGGSaGaeyOjGWRaaiilaiaadkhacaGG SaGaaeiOaiaabckacaWGNbWdamaaBaaaleaapeGaaGimaaWdaeqaaO WdbiabgIGiolaadEfapaWaa0baaSqaa8qacaWGWbaapaqaa8qacaWG RbWdamaaBaaameaapeGaaGimaaWdaeqaaSWdbiaacYcacaaIYaGaam 4Aa8aadaWgaaadbaWdbiaaicdaa8aabeaaaaGcpeWaaeWaa8aabaWd biaadofaaiaawIcacaGLPaaacaGGSaaaaa@77DA@  (5)

где k 0 =1/21/2p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcaaI XaGaai4laiaaikdacqGHsislcaaIXaGaai4laiaaikdacaWGWbaaaa@3F67@ , если Buu MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiaadwhacqGHGjsUcaWG1baaaa@3A8F@  и k 0 =11/2p, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcaaI XaGaeyOeI0IaaGymaiaac+cacaaIYaGaamiCaiaacYcaaaa@3EA8@  в противном случае;

g 0 0,x = u 0 | Γ ,  если  Bu=u,   g 0 0,x =B 0,x,D u 0 | Γ ,  если  Buu,  p>3. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4za8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qadaqadaWdaeaa peGaaGimaiaacYcacaWG4baacaGLOaGaayzkaaGaeyypa0JaamyDa8 aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGG8bWdamaaBaaaleaa peGaae4KdaWdaeqaaOWdbiaacYcacaqGGcGaaeiOaiaabwdbcaqGbr Gaae4oeiaabIdbcaqGGcGaaeiOaiaadkeacaWG1bGaeyypa0JaamyD aiaacYcacaqGGcGaaeiOaiaadEgapaWaaSbaaSqaa8qacaaIWaaapa qabaGcpeWaaeWaa8aabaWdbiaaicdacaGGSaGaamiEaaGaayjkaiaa wMcaaiabg2da9iaadkeadaqadaWdaeaapeGaaGimaiaacYcacaWG4b GaaiilaiaadseaaiaawIcacaGLPaaacaWG1bWdamaaBaaaleaapeGa aGimaaWdaeqaaOWdbiaacYhapaWaaSbaaSqaa8qacaqGtoaapaqaba GcpeGaaiilaiaabckacaqGGcGaaeyneiaabgebcaqG7qGaaeioeiaa bckacaqGGcGaamOqaiaadwhacqGHGjsUcaWG1bGaaiilaiaabckaca qGGcGaamiCaiabg6da+iaaiodacaGGUaaaaa@7641@  (6)

Теорема 1. Пусть выполнены условия (4) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ (6). Тогда существует единственное решение задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ (2) такое, что u W p 1,2 Q MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaiabgIGiolaadEfapaWaa0baaSqaa8qacaWGWbaapaqaa8qa caaIXaGaaiilaiaaikdaaaGcdaqadaWdaeaapeGaamyuaaGaayjkai aawMcaaaaa@3F76@ , причем справедлива оценка

u W p 1,2 Q c 0 u 0 W p 22/p G +f L p Q +g W p s 0 ,2 s 0 S . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeSyjIaLaamyDaiablwIiq9aadaWgaaWcbaWdbiaadEfapaWaa0ba aWqaa8qacaWGWbaapaqaa8qacaaIXaGaaiilaiaaikdaaaWcdaqada WdaeaapeGaamyuaaGaayjkaiaawMcaaaWdaeqaaOWdbiabgsMiJkaa dogapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeWaaeWaa8aabaWdbi ablwIiqjaadwhapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaeSyj Ia1damaaBaaaleaapeGaam4va8aadaqhaaadbaWdbiaadchaa8aaba WdbiaaikdacqGHsislcaaIYaGaai4laiaadchaaaWcdaqadaWdaeaa peGaam4raaGaayjkaiaawMcaaaWdaeqaaOWdbiabgUcaRiablwIiqj aadAgacqWILicupaWaaSbaaSqaa8qacaWGmbWdamaaBaaameaapeGa amiCaaWdaeqaaSWdbmaabmaapaqaa8qacaWGrbaacaGLOaGaayzkaa aapaqabaGcpeGaey4kaSIaeSyjIaLaam4zaiablwIiq9aadaWgaaWc baWdbiaadEfapaWaa0baaWqaa8qacaWGWbaapaqaa8qacaWGZbWdam aaBaaabaWdbiaaicdaa8aabeaapeGaaiilaiaaikdacaWGZbWdamaa BaaabaWdbiaaicdaa8aabeaaaaWcpeWaaeWaa8aabaWdbiaadofaai aawIcacaGLPaaaa8aabeaaaOWdbiaawIcacaGLPaaacaGGUaaaaa@6CC5@

Доказательство. Существование и единственность решений задачи (1), (2) вытекает из известных результатов о разрешимости параболических задач. Мы можем сослаться, например, на теоремы 2. 1 в [30, 31] и на теорему 5.3 в [32]. Отметим, что стандартные результаты (см., например, теорему 10.4 параграфа 10 гл. 7 в [29]) не дают утверждения теоремы, поскольку там требуется, чтобы в последнем включении в (4) пространство Соболева было заменено на пространства Гельдера.

Обозначим через Φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuOPdyeaaa@3787@  решение задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ (2), где α =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqySde2dayaalaWdbiabg2da9iaaicdaaaa@399D@ , а соответствующую постоянную c 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ya8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3809@  в этом случае обозначим через C 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@37E9@ .

Основные результаты. Вначале приведем некоторые построения. Сделаем замену v=u+Φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaiabg2da9iaadwhacqGHRaWkcaqGMoaaaa@3B16@  в уравнении (1). Функция v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaaaa@3708@  есть решение эквивалентной задачи

v t L 0 v+g t,x v+Φ =0,    Bv | S =0  ,    v | t=0 =0,   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGHsislcaWG mbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaadAhacqGHRaWkca WGNbWaaeWaa8aabaWdbiaadshacaGGSaGaamiEaaGaayjkaiaawMca amaabmaapaqaa8qacaWG2bGaey4kaSIaeuOPdyeacaGLOaGaayzkaa Gaeyypa0JaaGimaiaacYcacaqGGcGaaeiOaiaabckacaqGGcGaamOq aiaadAhacaGG8bWdamaaBaaaleaapeGaam4uaaWdaeqaaOWdbiabg2 da9iaaicdacaqGGcGaaeiOaiaacYcacaqGGcGaaeiOaiaabckacaqG GcGaamODaiaacYhapaWaaSbaaSqaa8qacaWG0bGaeyypa0JaaGimaa WdaeqaaOWdbiabg2da9iaaicdacaGGSaGaaeiOaiaabckaaaa@65A1@  (7)

v t i , y i = ψ ˜ i = ψ i Φ t i , y i ,  i=1,2,,r. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODamaabmaapaqaa8qacaWG0bWdamaaBaaaleaapeGaamyAaaWd aeqaaOWdbiaacYcacaWG5bWdamaaBaaaleaapeGaamyAaaWdaeqaaa GcpeGaayjkaiaawMcaaiabg2da9iqbeI8a59aagaacamaaBaaaleaa peGaamyAaaWdaeqaaOWdbiabg2da9iabeI8a59aadaWgaaWcbaWdbi aadMgaa8aabeaak8qacqGHsislcaqGMoWaaeWaa8aabaWdbiaadsha paWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiilaiaadMhapaWaaS baaSqaa8qacaWGPbaapaqabaaak8qacaGLOaGaayzkaaGaaiilaiaa bckacaqGGcGaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacq GHMacVcaGGSaGaamOCaiaac6caaaa@5B6A@  (8)

Пусть u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaaaa@3707@  решение задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ (2) из класса, указанного в теореме 1. Тогда v W p 1,2 Q MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaiabgIGiolaadEfapaWaa0baaSqaa8qacaWGWbaapaqaa8qa caaIXaGaaiilaiaaikdaaaGcdaqadaWdaeaapeGaamyuaaGaayjkai aawMcaaaaa@3F77@  и в силу теорем вложения v C 1 n+2 /2p,2 n+2 /p Q ¯ C Q ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaiabgIGiolaadoeapaWaaWbaaSqabeaapeGaaGymaiabgkHi Tmaabmaapaqaa8qacaWGUbGaey4kaSIaaGOmaaGaayjkaiaawMcaai aac+cacaaIYaGaamiCaiaacYcacaaIYaGaeyOeI0YaaeWaa8aabaWd biaad6gacqGHRaWkcaaIYaaacaGLOaGaayzkaaGaai4laiaadchaaa GcdaqadaWdaeaapeGabmyua8aagaqeaaWdbiaawIcacaGLPaaacqGH ckcZcaWGdbWaaeWaa8aabaWdbiqadgfapaGbaebaa8qacaGLOaGaay zkaaaaaa@5257@  (см. теоремы вложения в [34, теорема 2.6.6]). Обозначим через L 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaaaa@38D2@  оператор, сопоставляющий функции f L p Q MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiabgIGiolaadYeapaWaaSbaaSqaa8qacaWGWbaapaqabaGc peWaaeWaa8aabaWdbiaadgfaaiaawIcacaGLPaaaaaa@3D34@  решения задачи Lv=f,  Bv | S =0  ,    v | t=0 =0. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamitaiaadAhacqGH9aqpcaWGMbGaaiilaiaabckacaqGGcGaamOq aiaadAhacaGG8bWdamaaBaaaleaapeGaam4uaaWdaeqaaOWdbiabg2 da9iaaicdacaqGGcGaaeiOaiaacYcacaqGGcGaaeiOaiaabckacaqG GcGaamODaiaacYhapaWaaSbaaSqaa8qacaWG0bGaeyypa0JaaGimaa WdaeqaaOWdbiabg2da9iaaicdacaGGUaaaaa@51AA@  Аналогичным образом определяем оператор (L+g) 1 f MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadYeacqGHRaWkcaWGNbGaaiyka8aadaahaaWcbeqaa8qa cqGHsislcaaIXaaaaOGaamOzaaaa@3CEE@ .

Преобразуем уравнение (7). Выражая функцию v, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaiaacYcaaaa@37B8@  придем к равенству v= (L+g) 1 gΦ. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaiabg2da9iabgkHiTiaacIcacaWGmbGaey4kaSIaam4zaiaa cMcapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaakiaadEgacqqHMo GrcaGGUaaaaa@4209@  Далее имеем

v= (L+g) 1 gΦ= L 1 L (L+g) 1 gΦ= L 1 gΦ+ L 1 g (L+g) 1 gΦ. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaiabg2da9iabgkHiTiaacIcacaWGmbGaey4kaSIaam4zaiaa cMcapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaakiaadEgacqqHMo GrcqGH9aqpcqGHsislcaWGmbWdamaaCaaaleqabaWdbiabgkHiTiaa igdaaaGccaWGmbGaaiikaiaadYeacqGHRaWkcaWGNbGaaiyka8aada ahaaWcbeqaa8qacqGHsislcaaIXaaaaOGaam4zaiabfA6agjabg2da 9iabgkHiTiaadYeapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaaki aadEgacqqHMoGrcqGHRaWkcaWGmbWdamaaCaaaleqabaWdbiabgkHi TiaaigdaaaGccaWGNbGaaiikaiaadYeacqGHRaWkcaWGNbGaaiyka8 aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOGaam4zaiabfA6agjaa c6caaaa@6419@  (9)

Воспользовавшись определением функции g, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4zaiaacYcaaaa@37A9@  получим, что L1gΦ=i=1r αiL1 ΦiΦ. Построим матрицу B MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaaaa@36D4@  с элементами bji=L1ΦiΦtj,yj. Взяв равенство 9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaaiMdaaiaawIcacaGLPaaaaaa@3878@  в точке t j , y j , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadshapaWaaSbaaSqaa8qacaWGQbaapaqabaGc peGaaiilaiaadMhapaWaaSbaaSqaa8qacaWGQbaapaqabaaak8qaca GLOaGaayzkaaGaaiilaaaa@3DD2@  придем к системе

i=1rαibji=vtj,yj+L1g(L+g)1gΦtj,yj,  j=1,2,,r. (10)

Если v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaaaa@3708@  есть решение обратной задачи (7), (8), то система (10) может быть записана в виде

i=1 r α i b ji = ψ ˜ j + L 1 g (L+g) 1 gΦ t j , y j ,  j=1,2,,r. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWG Ybaan8aabaWdbiabggHiLdaakiaab2aicqaHXoqypaWaaSbaaSqaa8 qacaWGPbaapaqabaGcpeGaamOya8aadaWgaaWcbaWdbiaadQgacaWG PbaapaqabaGcpeGaeyypa0JaeyOeI0IafqiYdK3dayaaiaWaaSbaaS qaa8qacaWGQbaapaqabaGcpeGaey4kaSIaamita8aadaahaaWcbeqa a8qacqGHsislcaaIXaaaaOGaam4zaiaacIcacaWGmbGaey4kaSIaam 4zaiaacMcapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaakiaadEga caqGMoWaaeWaa8aabaWdbiaadshapaWaaSbaaSqaa8qacaWGQbaapa qabaGcpeGaaiilaiaadMhapaWaaSbaaSqaa8qacaWGQbaapaqabaaa k8qacaGLOaGaayzkaaGaaiilaiaabckacaqGGcGaamOAaiabg2da9i aaigdacaGGSaGaaGOmaiaacYcacqGHMacVcaGGSaGaamOCaiaac6ca aaa@67E9@  (11)

В матричном виде эти равенства имеют вид

B α = ψ +R α , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiqbeg7aH9aagaWca8qacqGH9aqpcuaHipqEpaGbaSaapeGa ey4kaSIaamOuamaabmaapaqaa8qacqaHXoqyaiaawIcacaGLPaaaca GGSaaaaa@4159@  (12)

где ψ = ( ψ ˜ 1 , ψ ˜ 2 ,, ψ ˜ r ) T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqiYdK3dayaalaWdbiabg2da9iaacIcacqGHsislcuaHipqEpaGb aGaadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaeyOeI0Iafq iYdK3dayaaiaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiilaiab gAci8kaacYcacqGHsislcuaHipqEpaGbaGaadaWgaaWcbaWdbiaadk haa8aabeaak8qacaGGPaWdamaaCaaaleqabaWdbiaadsfaaaaaaa@4B56@ , R= ( R 1 ,, R r ) T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9iaacIcacaWGsbWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiaacYcacqGHMacVcaGGSaGaamOua8aadaWgaaWcbaWdbi aadkhaa8aabeaak8qacaGGPaWdamaaCaaaleqabaWdbiaadsfaaaaa aa@419E@  с R j = L 1 g (L+g) 1 gΦ t j , y j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadQgaa8aabeaak8qacqGH9aqpcaWG mbWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaGccaWGNbGaaiikai aadYeacqGHRaWkcaWGNbGaaiyka8aadaahaaWcbeqaa8qacqGHsisl caaIXaaaaOGaam4zaiaabA6adaqadaWdaeaapeGaamiDa8aadaWgaa WcbaWdbiaadQgaa8aabeaak8qacaGGSaGaamyEa8aadaWgaaWcbaWd biaadQgaa8aabeaaaOWdbiaawIcacaGLPaaaaaa@4C2B@ , j=1,2,,r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacqGHMacVcaGG SaGaamOCaaaa@3E0E@ . Тогда можно сформулировать следующее утверждение.

Лемма 1. Пусть выполнены условия (4) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ (6). Если α MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqySde2dayaalaaaaa@37CD@  есть решение системы (12), то функция v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaaaa@3708@ , определяемая равенством (9), есть решение обратной задачи (7), (8). Наоборот, если v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaaaa@3708@  есть решение обратной задачи (7), (8), то α MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqySde2dayaalaaaaa@37CD@  есть решение системы (12).

Доказательство. Утверждение леммы в обратную сторону мы уже получили, выводя систему (12). Предположим, что α MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqySde2dayaalaaaaa@37CD@  есть решение системы (12). Построим функцию v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaaaa@3708@  как функцию, определяемую равенством (9). Как и ранее, после преобразований получим равенство (10). Покоординатная запись системы (12) имеет вид (11). Вычитая равенства (10), (11), получим, что v t j , y j = ψ ˜ j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODamaabmaapaqaa8qacaWG0bWdamaaBaaaleaapeGaamOAaaWd aeqaaOWdbiaacYcacaWG5bWdamaaBaaaleaapeGaamOAaaWdaeqaaa GcpeGaayjkaiaawMcaaiabg2da9iqbeI8a59aagaacamaaBaaaleaa peGaamOAaaWdaeqaaaaa@4249@ . Таким образом, равенство (9) выполнено. Кроме того, по определению функция v  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaiaacckaaaa@382C@  есть решение задачи (7).

Чтобы исследовать разрешимость задачи (7), (8), мы наложим дополнительное условие корректности

det B0. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadwgacaWG0bGaaeiOaiaadkeacqGHGjsUcaaIWaGaaiOl aaaa@3DF6@  (13)

Далее в качестве нормы числового вектора e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmyza8aagaWcaaaa@3718@  используем максимум моделей координат, а в качестве нормы вектор-функции используем сумму норм координат. В частности, α = max j α j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeSyjIaLafqySde2dayaalaWdbiablwIiqjabg2da9iaab2gacaqG HbGaaeiEa8aadaWgaaWcbaWdbiaadQgaa8aabeaak8qadaabdaWdae aapeGaeqySde2damaaBaaaleaapeGaamOAaaWdaeqaaaGcpeGaay5b SlaawIa7aaaa@45A8@ , Φ L p Q = j=1 r    Φ j L p Q MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeSyjIa1daiqbfA6agzaalaWdbiablwIiq9aadaWgaaWcbaWdbiaa dYeapaWaaSbaaWqaa8qacaWGWbaapaqabaWcpeWaaeWaa8aabaWdbi aadgfaaiaawIcacaGLPaaaa8aabeaak8qacqGH9aqpdaqfWaqabSWd aeaapeGaamOAaiabg2da9iaaigdaa8aabaWdbiaadkhaa0Wdaeaape GaeyyeIuoaaOGaaeydGiaabccacaqGGaGaeSyjIaLaeuOPdy0damaa BaaaleaapeGaamOAaaWdaeqaaOWdbiablwIiq9aadaWgaaWcbaWdbi aadYeapaWaaSbaaWqaa8qacaWGWbaapaqabaWcpeWaaeWaa8aabaWd biaadgfaaiaawIcacaGLPaaaa8aabeaaaaa@528A@ . Тогда обозначим норму матрицы B 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqa8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaaaa@38C8@  через C 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@37EA@ .

Для удобства далее будем считать, что T1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamivaiabgsMiJkaaigdaaaa@3956@ .

Лемма 2. Пусть v W p 1,2 Q MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaiabgIGiolaadEfapaWaa0baaSqaa8qacaWGWbaapaqaa8qa caaIXaGaaiilaiaaikdaaaGcdaqadaWdaeaapeGaamyuaaGaayjkai aawMcaaaaa@3F77@  удовлетворяет начальным и краевым условиям (7). Тогда справедливо неравенство

v C Q ¯ C 2 T 1s v W p 1,2 Q , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeSyjIaLaamODaiablwIiq9aadaWgaaWcbaWdbiaadoeadaqadaWd aeaapeGabmyua8aagaqeaaWdbiaawIcacaGLPaaaa8aabeaak8qacq GHKjYOcaWGdbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadsfa paWaaWbaaSqabeaapeGaaGymaiabgkHiTiaadohaaaGccqWILicuca WG2bGaeSyjIa1damaaBaaaleaapeGaam4va8aadaqhaaadbaWdbiaa dchaa8aabaWdbiaaigdacaGGSaGaaGOmaaaalmaabmaapaqaa8qaca WGrbaacaGLOaGaayzkaaaapaqabaGcpeGaaiilaaaa@5021@

где постоянная C 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@37EB@  не зависит от T 0,1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamivaiabgIGiopaajadapaqaa8qacaaIWaGaaiilaiaaigdaaiaa wIcacaGLDbaaaaa@3CA0@  и s 0,1 n+2 /2p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4CaiabgIGiopaabmaapaqaa8qacaaIWaGaaiilaiaaigdacqGH sisldaqadaWdaeaapeGaamOBaiabgUcaRiaaikdaaiaawIcacaGLPa aacaGGVaGaaGOmaiaadchaaiaawIcacaGLPaaaaaa@43E0@  произвольно.

Доказательство. Пусть s<1 n+2 /2p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4CaiabgYda8iaaigdacqGHsisldaqadaWdaeaapeGaamOBaiab gUcaRiaaikdaaiaawIcacaGLPaaacaGGVaGaaGOmaiaadchaaaa@404E@ . Мы имеем v W p s,2s Q C Q ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaiabgIGiolaadEfapaWaa0baaSqaa8qacaWGWbaapaqaa8qa caWGZbGaaiilaiaaikdacaWGZbaaaOWaaeWaa8aabaWdbiaadgfaai aawIcacaGLPaaacqGHckcZcaWGdbWaaeWaa8aabaWdbiqadgfapaGb aebaa8qacaGLOaGaayzkaaaaaa@4625@  при s> n+2 /2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Caiabg6da+maabmaapaqaa8qacaWGUbGaey4kaSIaaGOmaaGa ayjkaiaawMcaaiaac+cacaaIYaaaaa@3DB5@  (см. [34, теорема 2.6.6]). Тогда, используя интерполяционные неравенства ([34, следствие 5.7.3, гл. 7]), получим оценку

v C Q ¯ c 1 v W p s,2s Q c 1 c 2 v W p 1,2 Q s v L p Q 1s . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeSyjIaLaamODaiablwIiq9aadaWgaaWcbaWdbiaadoeadaqadaWd aeaapeGabmyua8aagaqeaaWdbiaawIcacaGLPaaaa8aabeaak8qacq GHKjYOcaWGJbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiablwIi qjaadAhacqWILicupaWaaSbaaSqaa8qacaWGxbWdamaaDaaameaape GaamiCaaWdaeaapeGaam4CaiaacYcacaaIYaGaam4Caaaalmaabmaa paqaa8qacaWGrbaacaGLOaGaayzkaaaapaqabaGcpeGaeyizImQaam 4ya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGJbWdamaaBaaa leaapeGaaGOmaaWdaeqaaOWdbiablwIiqjaadAhacqWILicupaWaa0 baaSqaa8qacaWGxbWdamaaDaaameaapeGaamiCaaWdaeaapeGaaGym aiaacYcacaaIYaaaaSWaaeWaa8aabaWdbiaadgfaaiaawIcacaGLPa aaa8aabaWdbiaadohaaaGccqWILicucaWG2bGaeSyjIa1damaaDaaa leaapeGaamita8aadaWgaaadbaWdbiaadchaa8aabeaal8qadaqada WdaeaapeGaamyuaaGaayjkaiaawMcaaaWdaeaapeGaaGymaiabgkHi TiaadohaaaGccaGGUaaaaa@6A4B@

Используя формулу Ньютона MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@  Лейбница, получим неравенство

v L p 0,T;E T v t L p 0,T;E MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeSyjIaLaamODaiablwIiq9aadaWgaaWcbaWdbiaadYeapaWaaSba aWqaa8qacaWGWbaapaqabaWcpeWaaeWaa8aabaWdbiaaicdacaGGSa GaamivaiaacUdacaWGfbaacaGLOaGaayzkaaaapaqabaGcpeGaeyiz ImQaamivaiablwIiqjaadAhapaWaaSbaaSqaa8qacaWG0baapaqaba GcpeGaeSyjIa1damaaBaaaleaapeGaamita8aadaWgaaadbaWdbiaa dchaa8aabeaal8qadaqadaWdaeaapeGaaGimaiaacYcacaWGubGaai 4oaiaadweaaiaawIcacaGLPaaaa8aabeaaaaa@50CC@ , где E MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyraaaa@36D7@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@  произвольное банахово пространство. Тогда предыдущее неравенство гарантирует оценку

v C Q ¯ c 1 c 2 T 1s v W p 1,2 Q . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeSyjIaLaamODaiablwIiq9aadaWgaaWcbaWdbiaadoeadaqadaWd aeaapeGabmyua8aagaqeaaWdbiaawIcacaGLPaaaa8aabeaak8qacq GHKjYOcaWGJbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadoga paWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaamiva8aadaahaaWcbe qaa8qacaaIXaGaeyOeI0Iaam4CaaaakiablwIiqjaadAhacqWILicu paWaaSbaaSqaa8qacaWGxbWdamaaDaaameaapeGaamiCaaWdaeaape GaaGymaiaacYcacaaIYaaaaSWaaeWaa8aabaWdbiaadgfaaiaawIca caGLPaaaa8aabeaak8qacaGGUaaaaa@525A@

Таким образом, C 2 = c 1 c 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpcaWG JbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadogapaWaaSbaaS qaa8qacaaIYaaapaqabaaaaa@3D20@ . Отметим, что обе постоянные c 1 , c 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaam4y a8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@3AD2@  ограничены при T0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamivaiabgkziUkaaicdaaaa@398D@ . Последнее вытекает из того простого факта, что функцию v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaaaa@3708@  можно продолжить нулем при t<0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabgYda8iaaicdaaaa@38C4@  на произвольный интервал, например, на интервал 1,T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabgkHiTiaaigdacaGGSaGaamivaaGaayjkaiaa wMcaaaaa@3AE6@  с сохранением класса.

Положим Φ=(Φ1,Φ2,,Φr)T и потребуем выполнения неравенств

B1ψmaxM1,M2,  M1=12C0C2T1sΦLpQ,

M2=14C02C1C22T22sΦLpQ2ΦLQ. (14)

Теорема 2. Пусть выполнены условия (4) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ (6), (13), (14). Тогда существует решение u, α MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadwhacaGGSaGafqySde2dayaalaaapeGaayjk aiaawMcaaaaa@3B2F@  задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ (3) такое, что u W p 1,2 Q MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaiabgIGiolaadEfapaWaa0baaSqaa8qacaWGWbaapaqaa8qa caaIXaGaaiilaiaaikdaaaGcdaqadaWdaeaapeGaamyuaaGaayjkai aawMcaaaaa@3F76@ .

Доказательство. Мы будем исследовать разрешимость системы (12), используя теорему Шаудера. Оценим норму оператора B 1 R+ B 1 ψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqa8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOGaamOuaiab gUcaRiaadkeapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaakiqbeI 8a59aagaWcaaaa@3F3F@  и покажем, что он переводит некоторый шар B R 0 = α :   α R 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqa8aadaWgaaWcbaWdbiaadkfapaWaaSbaaWqaa8qacaaIWaaa paqabaaaleqaaOWdbiabg2da9maacmaapaqaa8qacuaHXoqypaGbaS aapeGaaiOoaiaabckacaqGGcGaeSyjIaLafqySde2dayaalaWdbiab lwIiqjabgsMiJkaadkfapaWaaSbaaSqaa8qacaaIWaaapaqabaaak8 qacaGL7bGaayzFaaaaaa@4934@  в себя. Имеем, используя лемму 2 и теорему 1, что

B1RαC3T1sg(L+g)1gΦLpQC3T1sgLpQ(L+g)1gΦCQ¯C3T1sαΦLpQ(L+g)1gΦCQ¯,  C3=C0C1C2. (15)

Оценим (L+g) 1 gΦ C Q ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeSyjIaLaaiikaiaadYeacqGHRaWkcaWGNbGaaiyka8aadaahaaWc beqaa8qacqGHsislcaaIXaaaaOGaam4zaiaabA6acqWILicupaWaaS baaSqaa8qacaWGdbWaaeWaa8aabaWdbiqadgfapaGbaebaa8qacaGL OaGaayzkaaaapaqabaaaaa@4442@ . Пусть (L+g) 1 f 0 =w MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadYeacqGHRaWkcaWGNbGaaiyka8aadaahaaWcbeqaa8qa cqGHsislcaaIXaaaaOGaamOza8aadaWgaaWcbaWdbiaaicdaa8aabe aak8qacqGH9aqpcaWG3baaaa@401E@ , где f 0 L p Q MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHiiIZcaWG mbWdamaaBaaaleaapeGaamiCaaWdaeqaaOWdbmaabmaapaqaa8qaca WGrbaacaGLOaGaayzkaaaaaa@3E62@ . Тогда w t L 0 w+gw= f 0 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Da8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGHsislcaWG mbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaadEhacqGHRaWkca WGNbGaam4Daiabg2da9iaadAgapaWaaSbaaSqaa8qacaaIWaaapaqa baGcpeGaaiOlaaaa@42F9@  Это равенство можно записать в виде

w= L 1 gw+ L 1 f 0 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Daiabg2da9iabgkHiTiaadYeapaWaaWbaaSqabeaapeGaeyOe I0IaaGymaaaakiaadEgacaWG3bGaey4kaSIaamita8aadaahaaWcbe qaa8qacqGHsislcaaIXaaaaOGaamOza8aadaWgaaWcbaWdbiaaicda a8aabeaak8qacaGGUaaaaa@442F@  (16)

Оценим норму

L 1 gw C Q ¯ C 0 C 2 T 1s gw L p Q C 0 C 2 T 1s g L p Q w C Q ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeSyjIaLaamita8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOGa am4zaiaadEhacqWILicupaWaaSbaaSqaa8qacaWGdbWaaeWaa8aaba WdbiqadgfapaGbaebaa8qacaGLOaGaayzkaaaapaqabaGcpeGaeyiz ImQaam4qa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaWGdbWdam aaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadsfapaWaaWbaaSqabeaa peGaaGymaiabgkHiTiaadohaaaGccqWILicucaWGNbGaam4Daiablw Iiq9aadaWgaaWcbaWdbiaadYeapaWaaSbaaWqaa8qacaWGWbaapaqa baWcpeWaaeWaa8aabaWdbiaadgfaaiaawIcacaGLPaaaa8aabeaak8 qacqGHKjYOcaWGdbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaa doeapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaamiva8aadaahaa Wcbeqaa8qacaaIXaGaeyOeI0Iaam4CaaaakiablwIiqjaadEgacqWI LicupaWaaSbaaSqaa8qacaWGmbWdamaaBaaameaapeGaamiCaaWdae qaaSWdbmaabmaapaqaa8qacaWGrbaacaGLOaGaayzkaaaapaqabaGc peGaeSyjIaLaam4DaiablwIiq9aadaWgaaWcbaWdbiaadoeadaqada WdaeaapeGabmyua8aagaqeaaWdbiaawIcacaGLPaaaa8aabeaak8qa cqGHKjYOaaa@6EAB@

C 0 C 2 T 1s α Φ L p Q w C Q ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaWGdbWdamaa BaaaleaapeGaaGOmaaWdaeqaaOWdbiaadsfapaWaaWbaaSqabeaape GaaGymaiabgkHiTiaadohaaaGccqWILicucuaHXoqypaGbaSaapeGa eSyjIaLaeSyjIaLafuOPdyKbaSaacqWILicupaWaaSbaaSqaa8qaca WGmbWdamaaBaaameaapeGaamiCaaWdaeqaaSWdbmaabmaapaqaa8qa caWGrbaacaGLOaGaayzkaaaapaqabaGcpeGaeSyjIaLaam4Daiablw Iiq9aadaWgaaWcbaWdbiaadoeadaqadaWdaeaapeGabmyua8aagaqe aaWdbiaawIcacaGLPaaaa8aabeaak8qacaGGUaaaaa@52E3@

Тогда, если

C 0 C 2 T 1s α Φ L p Q 1/2, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaWGdbWdamaa BaaaleaapeGaaGOmaaWdaeqaaOWdbiaadsfapaWaaWbaaSqabeaape GaaGymaiabgkHiTiaadohaaaGccqWILicucuaHXoqypaGbaSaapeGa eSyjIaLaeSyjIaLafuOPdyKbaSaacqWILicupaWaaSbaaSqaa8qaca WGmbWdamaaBaaameaapeGaamiCaaWdaeqaaSWdbmaabmaapaqaa8qa caWGrbaacaGLOaGaayzkaaaapaqabaGcpeGaeyizImQaaGymaiaac+ cacaaIYaGaaiilaaaa@4F83@  (17)

то уравнение (16) имеет единственное решение и справедлива оценка

w C Q ¯ 2 L 1 f 0 C Q ¯ 2 C 0 C 2 T 1s f 0 L p Q . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeSyjIaLaam4DaiablwIiq9aadaWgaaWcbaWdbiaadoeadaqadaWd aeaapeGabmyua8aagaqeaaWdbiaawIcacaGLPaaaa8aabeaak8qacq GHKjYOcaaIYaGaeSyjIaLaamita8aadaahaaWcbeqaa8qacqGHsisl caaIXaaaaOGaamOza8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacq WILicupaWaaSbaaSqaa8qacaWGdbWaaeWaa8aabaWdbiqadgfapaGb aebaa8qacaGLOaGaayzkaaaapaqabaGcpeGaeyizImQaaGOmaiaado eapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaam4qa8aadaWgaaWc baWdbiaaikdaa8aabeaak8qacaWGubWdamaaCaaaleqabaWdbiaaig dacqGHsislcaWGZbaaaOGaeSyjIaLaamOza8aadaWgaaWcbaWdbiaa icdaa8aabeaak8qacqWILicupaWaaSbaaSqaa8qacaWGmbWdamaaBa aameaapeGaamiCaaWdaeqaaSWdbmaabmaapaqaa8qacaWGrbaacaGL OaGaayzkaaaapaqabaGcpeGaaiOlaaaa@5F5B@  (18)

Если мы возьмем f 0 =gΦ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcaWG NbGaaeOPdaaa@3B44@ , то получим оценку

(L+g) 1 gΦ C Q ¯ 2 C 0 C 2 T 1s α Φ L p Q Φ L Q . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeSyjIaLaaiikaiaadYeacqGHRaWkcaWGNbGaaiyka8aadaahaaWc beqaa8qacqGHsislcaaIXaaaaOGaam4zaiaabA6acqWILicupaWaaS baaSqaa8qacaWGdbWaaeWaa8aabaWdbiqadgfapaGbaebaa8qacaGL OaGaayzkaaaapaqabaGcpeGaeyizImQaaGOmaiaadoeapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaam4qa8aadaWgaaWcbaWdbiaaikda a8aabeaak8qacaWGubWdamaaCaaaleqabaWdbiaaigdacqGHsislca WGZbaaaOGaeSyjIaLafqySde2dayaalaWdbiablwIiqjablwIiqjqb fA6agzaalaGaeSyjIa1damaaBaaaleaapeGaamita8aadaWgaaadba Wdbiaadchaa8aabeaal8qadaqadaWdaeaapeGaamyuaaGaayjkaiaa wMcaaaWdaeqaaOWdbiablwIiqjabfA6agjablwIiq9aadaWgaaWcba WdbiaadYeapaWaaSbaaWqaa8qacqaHEisPa8aabeaal8qadaqadaWd aeaapeGaamyuaaGaayjkaiaawMcaaaWdaeqaaOWdbiaac6caaaa@65D8@

Окончательно из (15), (18) имеем оценку

B 1 R α 2 C 0 2 C 1 C 2 2 T 22s α 2 Φ L p Q 2 Φ L Q . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeSyjIaLaamOqa8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOGa amOuamaabmaapaqaa8qacqaHXoqyaiaawIcacaGLPaaacqWILicucq GHKjYOcaaIYaGaam4qa8aadaqhaaWcbaWdbiaaicdaa8aabaWdbiaa ikdaaaGccaWGdbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaado eapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaaIYaaaaOGaamiva8aa daahaaWcbeqaa8qacaaIYaGaeyOeI0IaaGOmaiaadohaaaGccqWILi cucuaHXoqypaGbaSaapeGaeSyjIa1damaaCaaaleqabaWdbiaaikda aaGccqWILicucuqHMoGrgaWcaiablwIiq9aadaqhaaWcbaWdbiaadY eapaWaaSbaaWqaa8qacaWGWbaapaqabaWcpeWaaeWaa8aabaWdbiaa dgfaaiaawIcacaGLPaaaa8aabaWdbiaaikdaaaGccqWILicucqqHMo GrcqWILicupaWaaSbaaSqaa8qacaWGmbWdamaaBaaameaapeGaeqOh IukapaqabaWcpeWaaeWaa8aabaWdbiaadgfaaiaawIcacaGLPaaaa8 aabeaak8qacaGGUaaaaa@66B9@

Положим, R 0 =2 B 1 ψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcaaI YaGaeSyjIaLaamOqa8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaO GafqiYdK3dayaalaWdbiablwIiqbaa@40E8@ , и пусть α B R 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqySde2dayaalaWdbiabgIGiolaadkeapaWaaSbaaSqaa8qacaWG sbWdamaaBaaameaapeGaaGimaaWdaeqaaaWcbeaaaaa@3C6A@ . Тогда при условии (17) и условии

C 0 2 C 1 C 2 2 T 22s α 2 Φ L p Q 2 Φ L Q R 0 /4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaqhaaWcbaWdbiaaicdaa8aabaWdbiaaikdaaaGccaWG dbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadoeapaWaa0baaS qaa8qacaaIYaaapaqaa8qacaaIYaaaaOGaamiva8aadaahaaWcbeqa a8qacaaIYaGaeyOeI0IaaGOmaiaadohaaaGccqWILicucuaHXoqypa GbaSaapeGaeSyjIa1damaaCaaaleqabaWdbiaaikdaaaGccqWILicu cuqHMoGrgaWcaiablwIiq9aadaqhaaWcbaWdbiaadYeapaWaaSbaaW qaa8qacaWGWbaapaqabaWcpeWaaeWaa8aabaWdbiaadgfaaiaawIca caGLPaaaa8aabaWdbiaaikdaaaGccqWILicucqqHMoGrcqWILicupa WaaSbaaSqaa8qacaWGmbWdamaaBaaameaapeGaeqOhIukapaqabaWc peWaaeWaa8aabaWdbiaadgfaaiaawIcacaGLPaaaa8aabeaak8qacq GHKjYOcaWGsbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaac+ca caaI0aaaaa@5F8E@

множество значений оператора B 1 ψ + B 1 R α MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqa8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOGafqiYdK3d ayaalaWdbiabgUcaRiaadkeapaWaaWbaaSqabeaapeGaeyOeI0IaaG ymaaaakiaadkfadaqadaWdaeaapeGafqySde2dayaalaaapeGaayjk aiaawMcaaaaa@42C7@  лежит в B R 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqa8aadaWgaaWcbaWdbiaadkfapaWaaSbaaWqaa8qacaaIWaaa paqabaaaleqaaaaa@3916@ . Как следствие (17), (19), для того, чтобы оператор B 1 ψ + B 1 R α MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqa8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOGafqiYdK3d ayaalaWdbiabgUcaRiaadkeapaWaaWbaaSqabeaapeGaeyOeI0IaaG ymaaaakiaadkfadaqadaWdaeaapeGafqySde2dayaalaaapeGaayjk aiaawMcaaaaa@42C7@  переводил шар B R 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqa8aadaWgaaWcbaWdbiaadkfapaWaaSbaaWqaa8qacaaIWaaa paqabaaaleqaaaaa@3916@  в себя, необходимо потребовать, чтобы

R 0 1 2 C 0 C 2 T 1s Φ L p Q = M 1 ,   R 0 1 4 C 0 2 C 1 C 2 2 T 22s Φ L p Q 2 Φ L Q = M 2 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHKjYOdaWc aaWdaeaapeGaaGymaaWdaeaapeGaaGOmaiaadoeapaWaaSbaaSqaa8 qacaaIWaaapaqabaGcpeGaam4qa8aadaWgaaWcbaWdbiaaikdaa8aa beaak8qacaWGubWdamaaCaaaleqabaWdbiaaigdacqGHsislcaWGZb aaaOGaeSyjIaLafuOPdyKbaSaacqWILicupaWaaSbaaSqaa8qacaWG mbWdamaaBaaameaapeGaamiCaaWdaeqaaSWdbmaabmaapaqaa8qaca WGrbaacaGLOaGaayzkaaaapaqabaaaaOWdbiabg2da9iaad2eapaWa aSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaabckacaqGGcGaam Oua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHKjYOdaWcaaWd aeaapeGaaGymaaWdaeaapeGaaGinaiaadoeapaWaa0baaSqaa8qaca aIWaaapaqaa8qacaaIYaaaaOGaam4qa8aadaWgaaWcbaWdbiaaigda a8aabeaak8qacaWGdbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaG OmaaaakiaadsfapaWaaWbaaSqabeaapeGaaGOmaiabgkHiTiaaikda caWGZbaaaOGaeSyjIaLafuOPdyKbaSaacqWILicupaWaa0baaSqaa8 qacaWGmbWdamaaBaaameaapeGaamiCaaWdaeqaaSWdbmaabmaapaqa a8qacaWGrbaacaGLOaGaayzkaaaapaqaa8qacaaIYaaaaOGaeSyjIa LaeuOPdyKaeSyjIa1damaaBaaaleaapeGaamita8aadaWgaaadbaWd biabe6HiLcWdaeqaaSWdbmaabmaapaqaa8qacaWGrbaacaGLOaGaay zkaaaapaqabaaaaOWdbiabg2da9iaad2eapaWaaSbaaSqaa8qacaaI YaaapaqabaGcpeGaaiOlaaaa@7AAF@

Кроме того, в силу конечномерности шара этот оператор будет и вполне непрерывным (просто непрерывность оператора очевидна). Тогда по теореме Шаудера уравнение (12) имеет решение в этом шаре. Функция v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaaaa@3708@  находится затем как решение задачи (7).

Следствие 1. Анализируя условие (14), легко заметить, что при выполнении условия (13) теорема существования 1 имеет место, если параметр T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaaaa@36E6@  достаточно мал.

Далее мы приведем некоторые замечания по поводу условия корректности (13).

Вообще говоря, если мы строим приближение функции g t,x , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4zamaabmaapaqaa8qacaWG0bGaaiilaiaadIhaaiaawIcacaGL PaaacaGGSaaaaa@3BF7@  используя данные (3), то систему линейно независимых функций Φ i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuOPdy0damaaBaaaleaapeGaamyAaaWdaeqaaaaa@38CF@  мы выбираем сами, исходя из каких-то соображений. Например, предположим, что функция Φ t.x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuOPdy0aaeWaa8aabaWdbiaadshacaGGUaGaamiEaaGaayjkaiaa wMcaaaaa@3BD7@  обладает свойством:

найдется окрестность U MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvaaaa@36E7@  множества точек t i , y i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbmaabmaapaqaa8qacaWG0bWdamaaBaaaleaapeGa amyAaaWdaeqaaOWdbiaacYcacaWG5bWdamaaBaaaleaapeGaamyAaa WdaeqaaaGcpeGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaa@3F70@  такая, что

Φ δ 1 >0  для всех   t,x UQ. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaqWaa8aabaWdbiabfA6agbGaay5bSlaawIa7aiabgwMiZkabes7a K9aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH+aGpcaaIWaGaae iOaiaabckacaqG0qGaae4oeiaab+ebcaqGGcGaaeOmeiaabgebcaqG 1qGaaeyreiaabckacaqGGcWaaeWaa8aabaWdbiaadshacaGGSaGaam iEaaGaayjkaiaawMcaaiabgIGiolaadwfacqGHPiYXcaWGrbGaaiOl aaaa@5601@  (19)

Не так трудно построить систему функций φ i C 2 Q ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOXdO2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgIGiolaa doeapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qaceWGrb WdayaaraaapeGaayjkaiaawMcaaaaa@3F3F@  такую, что φ i t j , y j = δ ij MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOXdO2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbmaabmaapaqa a8qacaWG0bWdamaaBaaaleaapeGaamOAaaWdaeqaaOWdbiaacYcaca WG5bWdamaaBaaaleaapeGaamOAaaWdaeqaaaGcpeGaayjkaiaawMca aiabg2da9iabes7aK9aadaWgaaWcbaWdbiaadMgacaWGQbaapaqaba aaaa@4523@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@  символ Кронекера, φ i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOXdO2damaaBaaaleaapeGaamyAaaWdaeqaaaaa@3912@  удовлетворяют однородным граничным и начальным условиям (2), supp  φ i U MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4CaiaadwhacaWGWbGaamiCaiaabckacqaHgpGApaWaaSbaaSqa a8qacaWGPbaapaqabaGcpeGaeyOGIWSaamyvaaaa@4101@  для всех i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaaaa@36FB@ . Тогда система

Φ 1i = 1 Φ L φ i ,   L 1 Φ 1i Φ= φ i , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuOPdy0damaaBaaaleaapeGaaGymaiaadMgaa8aabeaak8qacqGH 9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaeuOPdyeaaiaadYeacq aHgpGApaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiilaiaabcka caqGGcGaamita8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOGaeu OPdy0damaaBaaaleaapeGaaGymaiaadMgaa8aabeaak8qacqqHMoGr cqGH9aqpcqaHgpGApaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaai ilaaaa@50C8@

обладает тем свойством, что det  L 1 Φ 1i Φ t j , y j =1, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadwgacaWG0bGaaeiOamaacmaapaqaa8qacaWGmbWdamaa CaaaleqabaWdbiabgkHiTiaaigdaaaGccqqHMoGrpaWaaSbaaSqaa8 qacaaIXaGaamyAaaWdaeqaaOWdbiabfA6agnaabmaapaqaa8qacaWG 0bWdamaaBaaaleaapeGaamOAaaWdaeqaaOWdbiaacYcacaWG5bWdam aaBaaaleaapeGaamOAaaWdaeqaaaGcpeGaayjkaiaawMcaaaGaay5E aiaaw2haaiabg2da9iaaigdacaGGSaaaaa@4DB2@  и таким образом условие корректности (13) выполнено.

Более того, справедливо следующее утверждение:

Лемма 3. Пусть выполнены условия (4) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ (6), (19), и система функций Φi такова, что det L1ΦiΦtj,yj=0  i,j=1,2,,r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadMgacaGGSaGaamOAaiabg2da9iaaigdacaGG SaGaaGOmaiaacYcacqGHMacVcaGGSaGaamOCaaGaayjkaiaawMcaaa aa@4154@ . Тогда для любого ε>0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaeyOpa4JaaGimaaaa@3976@  найдется система Φ0iLpQ  i=1,2,,r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadMgacqGH9aqpcaaIXaGaaiilaiaaikdacaGG SaGaeyOjGWRaaiilaiaadkhaaiaawIcacaGLPaaaaaa@3FB5@  такая, что ΦΦ0LpQ<ε и det L1Φ0iΦtj,yj0. Здесь Φ0=(Φ01,Φ02,,Φ0r)T.

Доказательство. Раcсмотрим систему функций Φ 0i = Φ i +δ Φ 1i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOPd8aadaWgaaWcbaWdbiaaicdacaWGPbaapaqabaGcpeGaeyyp a0JaaeOPd8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGHRaWkcq aH0oazcaqGMoWdamaaBaaaleaapeGaaGymaiaadMgaa8aabeaaaaa@429F@ , где функции Φ 1i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOPd8aadaWgaaWcbaWdbiaaigdacaWGPbaapaqabaaaaa@393C@  определены равенством (22). Тогда функция ψδ=det L1Φ0iΦtj,yj есть многочлен по параметру δ, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaaiilaaaa@3862@  и, более того, коэффициент перед старшей степенью равен det L1Φ1iΦtj,yj=1. Выберем δ 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg6da+iaa icdaaaa@3AA2@  так, чтобы ΦΦ0LpQ<ε для всех δ < δ 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaqWaa8aabaWdbiabes7aKbGaay5bSlaawIa7aiabgYda8iabes7a K9aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3EB0@ . Поскольку число нулей многочлена конечно, то в любой окрестности точки δ=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaeyypa0JaaGimaaaa@3972@  найдутся точки, где ψ δ 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdK3aaeWaa8aabaWdbiabes7aKbGaayjkaiaawMcaaiabgcMi 5kaaicdaaaa@3DA9@ .

Рассмотрим вопрос о единственности решений задачи. Естественно утверждать, что теорема единственности имеет место в некотором шаре α B R 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqySde2dayaalaWdbiabgIGiolaadkeapaWaaSbaaSqaa8qacaWG sbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaaaaa@3C6B@ . Приведем условия единственности:

C16C02C22T22sR1ΦLpQ2ΦLQ+2C0C2T1sΦLpQΦLQ<1, (20)

R 1 C 0 C 2 T 1s Φ L p Q 1/2. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGdbWdamaa BaaaleaapeGaaGimaaWdaeqaaOWdbiaadoeapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaamiva8aadaahaaWcbeqaa8qacaaIXaGaeyOe I0Iaam4CaaaakiablwIiqjqbfA6agzaalaGaeSyjIa1damaaBaaale aapeGaamita8aadaWgaaadbaWdbiaadchaa8aabeaal8qadaqadaWd aeaapeGaamyuaaGaayjkaiaawMcaaaWdaeqaaOWdbiabgsMiJkaaig dacaGGVaGaaGOmaiaac6caaaa@4D6B@  (21)

Теорема 3. Пусть выполнены условия (4) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ (6), (13), (14), (20), (21). Тогда если u i , α i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadwhapaWaaSbaaSqaa8qacaWGPbaapaqabaGc peGaaiilaiqbeg7aH9aagaWcamaaBaaaleaapeGaamyAaaWdaeqaaa GcpeGaayjkaiaawMcaaaaa@3DD4@   i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadMgacqGH9aqpcaaIXaGaaiilaiaaikdaaiaa wIcacaGLPaaaaaa@3BD0@  два решения задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@ (3) и α i B R 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgIGiolaa dkeapaWaaSbaaSqaa8qacaWGsbWdamaaBaaameaapeGaaGymaaWdae qaaaWcbeaaaaa@3D9C@ , то u 1 = u 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaWG 1bWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaa@3B4C@ , α 1 = α 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iab eg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@3C96@ .

Доказательство. Мы предположим, что α 1 , α 2 B R 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqySde2dayaalaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiil aiqbeg7aH9aagaWcamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgI GiolaadkeapaWaaSbaaSqaa8qacaWGsbWdamaaBaaameaapeGaaGym aaWdaeqaaaWcbeaaaaa@410C@  два различных решения системы (12), и v 1 , v 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamOD a8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@3AF8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaG+aaaa6d8qa caWFtacaaa@44C9@  соответствующие решения задачи (7). Вычитая соответствующие уравнения системы (12), получим равенство

B α 1 α 2 =R α 1 R α 2 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqamaabmaapaqaa8qacuaHXoqypaGbaSaadaWgaaWcbaWdbiaa igdaa8aabeaak8qacqGHsislcuaHXoqypaGbaSaadaWgaaWcbaWdbi aaikdaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpcaWGsbWaaeWa a8aabaWdbiqbeg7aH9aagaWcamaaBaaaleaapeGaaGymaaWdaeqaaa GcpeGaayjkaiaawMcaaiabgkHiTiaadkfadaqadaWdaeaapeGafqyS de2dayaalaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaay zkaaGaaiOlaaaa@4C8E@

Отсюда имеем оценку

α 0 C 1 R α 1 R( α 2 ,   α 0 = α 1 α 2 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeSyjIaLafqySde2dayaalaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaeSyjIaLaeyizImQaam4qa8aadaWgaaWcbaWdbiaaigdaa8aabe aak8qacqWILicucaWGsbWaaeWaa8aabaWdbiqbeg7aH9aagaWcamaa BaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgkHiTi aadkfacaGGOaGafqySde2dayaalaWaaSbaaSqaa8qacaaIYaaapaqa baGcpeGaeSyjIaLaaiilaiaabckacaqGGcGafqySde2dayaalaWaaS baaSqaa8qacaaIWaaapaqabaGcpeGaeyypa0JafqySde2dayaalaWa aSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyOeI0IafqySde2dayaala WaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiOlaaaa@5A23@  (22)

Имеет место представление

R j α 1 R j α 2 = L 1 g 1 v 1 t j , y j + L 1 g 2 v 2 t j , y j = MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadQgaa8aabeaak8qadaqadaWdaeaa peGafqySde2dayaalaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qaca GLOaGaayzkaaGaeyOeI0IaamOua8aadaWgaaWcbaWdbiaadQgaa8aa beaak8qadaqadaWdaeaapeGafqySde2dayaalaWaaSbaaSqaa8qaca aIYaaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0JaeyOeI0Iaamit a8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOGaam4za8aadaWgaa WcbaWdbiaaigdaa8aabeaak8qacaWG2bWdamaaBaaaleaapeGaaGym aaWdaeqaaOWdbmaabmaapaqaa8qacaWG0bWdamaaBaaaleaapeGaam OAaaWdaeqaaOWdbiaacYcacaWG5bWdamaaBaaaleaapeGaamOAaaWd aeqaaaGcpeGaayjkaiaawMcaaiabgUcaRiaadYeapaWaaWbaaSqabe aapeGaeyOeI0IaaGymaaaakiaadEgapaWaaSbaaSqaa8qacaaIYaaa paqabaGcpeGaamODa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qada qadaWdaeaapeGaamiDa8aadaWgaaWcbaWdbiaadQgaa8aabeaak8qa caGGSaGaamyEa8aadaWgaaWcbaWdbiaadQgaa8aabeaaaOWdbiaawI cacaGLPaaacqGH9aqpaaa@64AE@

1 2 L 1 g 1 g 2 v 1 + v 2 t j , y j 1 2 L 1 g 1 + g 2 v 1 v 2 t j , y j = I 1j + I 2j , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaamit a8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOWaaeWaa8aabaWdbi aadEgapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyOeI0Iaam4z a8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaada qadaWdaeaapeGaamODa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qa cqGHRaWkcaWG2bWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaay jkaiaawMcaamaabmaapaqaa8qacaWG0bWdamaaBaaaleaapeGaamOA aaWdaeqaaOWdbiaacYcacaWG5bWdamaaBaaaleaapeGaamOAaaWdae qaaaGcpeGaayjkaiaawMcaaiabgkHiTmaalaaapaqaa8qacaaIXaaa paqaa8qacaaIYaaaaiaadYeapaWaaWbaaSqabeaapeGaeyOeI0IaaG ymaaaakmaabmaapaqaa8qacaWGNbWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiabgUcaRiaadEgapaWaaSbaaSqaa8qacaaIYaaapaqaba aak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadAhapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaeyOeI0IaamODa8aadaWgaaWcbaWdbi aaikdaa8aabeaaaOWdbiaawIcacaGLPaaadaqadaWdaeaapeGaamiD a8aadaWgaaWcbaWdbiaadQgaa8aabeaak8qacaGGSaGaamyEa8aada WgaaWcbaWdbiaadQgaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqp caWGjbWdamaaBaaaleaapeGaaGymaiaadQgaa8aabeaak8qacqGHRa WkcaWGjbWdamaaBaaaleaapeGaaGOmaiaadQgaa8aabeaak8qacaGG Saaaaa@7300@

пусть I 1 = ( I 11 ,, I 1r ) T , I 2 = ( I 21 ,, I 2r ) T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmysa8aagaWcamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da 9iaacIcacaWGjbWdamaaBaaaleaapeGaaGymaiaaigdaa8aabeaak8 qacaGGSaGaeyOjGWRaaiilaiaadMeapaWaaSbaaSqaa8qacaaIXaGa amOCaaWdaeqaaOWdbiaacMcapaWaaWbaaSqabeaapeGaamivaaaaki aacYcaceWGjbWdayaalaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGa eyypa0JaaiikaiaadMeapaWaaSbaaSqaa8qacaaIYaGaaGymaaWdae qaaOWdbiaacYcacqGHMacVcaGGSaGaamysa8aadaWgaaWcbaWdbiaa ikdacaWGYbaapaqabaGcpeGaaiyka8aadaahaaWcbeqaa8qacaWGub aaaaaa@5324@ . Оценим каждое из слагаемых, считая, что выполнено условие (24). Для первого слагаемого имеем

I1C0C2T1sα0ΦLpQv1+v2CQ¯/2.

По определению, vi=(L+g)1giΦ. Используя оценку (18), получим

vi2C0C2T1sgiΦLpQ2C0C2T1sR1ΦLpQΦLQ. (23)

Таким образом,

I12C02C22T22sR1ΦLpQ2ΦLQα0. (24)

Оценим второе слагаемое

I2C0C2T1sR1ΦLpQv1v2CQ¯. (25)

Функция v 1 v 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWG 2bWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaa@3B35@  удовлетворяет уравнению

L v 1 v 2 + g 1 + g 2 2 v 1 v 2 = g 1 g 2 Φ+ v 1 + v 2 2 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamitamaabmaapaqaa8qacaWG2bWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiabgkHiTiaadAhapaWaaSbaaSqaa8qacaaIYaaapaqaba aak8qacaGLOaGaayzkaaGaey4kaSYaaSaaa8aabaWdbiaadEgapaWa aSbaaSqaa8qacaaIXaaapaqabaGcpeGaey4kaSIaam4za8aadaWgaa WcbaWdbiaaikdaa8aabeaaaOqaa8qacaaIYaaaamaabmaapaqaa8qa caWG2bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgkHiTiaadA hapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGa eyypa0JaeyOeI0YaaeWaa8aabaWdbiaadEgapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyOeI0Iaam4za8aadaWgaaWcbaWdbiaaikda a8aabeaaaOWdbiaawIcacaGLPaaadaqadaWdaeaapeGaaeOPdiabgU caRmaalaaapaqaa8qacaWG2bWdamaaBaaaleaapeGaaGymaaWdaeqa aOWdbiabgUcaRiaadAhapaWaaSbaaSqaa8qacaaIYaaapaqabaaake aapeGaaGOmaaaaaiaawIcacaGLPaaacaGGUaaaaa@5EE1@

Используя оценку (23), получим

v1v2CQ¯2C0C2T1sα0(ΦLpQΦLQ+

2C0C2T1sR1ΦLpQ2ΦLQ).

Из этой оценки и оценок (24), (25) выводим

I1+I2(6C02C22T22sR1ΦLpQ2ΦLQ+

2C0C2T1sΦLpQΦLQ)α0.

Это неравенство и (22) гарантируют, что α 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqySde2dayaalaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaeyyp a0JaaGimaaaa@3AAC@ . Тогда v 1 = v 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaWG 2bWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaa@3B4E@  и, соответственно, u 1 = u 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaWG 1bWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaa@3B4C@ .

ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

В настоящей работе рассмотрена обратная задача определения коэффициента поглощения в параболическом уравнении, представленного в виде линейной комбинации известных функций с неизвестными параметрами. Проведен анализ корректности задачи в пространствах Соболева, доказаны теоремы существования и единственности решения задачи, получены априорные оценки решения. Предложенный подход может служить основой для построения численного алгоритма приближенного решения обратной задачи. Полученные результаты также допускают обобщение на более широкий класс задач, включая квазилинейные уравнения.

×

About the authors

Julia A. Tukmacheva

Yugra State University

Author for correspondence.
Email: y_tukmacheva@ugrasu.ru

Postgraduate student, Engineering School of Digital Technologies

Russian Federation, Khanty-Mansiysk

Sergey G. Pyatkov

Yugra State University

Email: s_pyatkov@ugrasu.ru
Russian Federation, Khanty-Mansiysk

References

  1. Алифанов, О. М. Обратные задачи сложного теплообмена / О. М. Алифанов, Е. А. Артюхов, А. В. Ненарокомов. – Москва : Янус-К, 2009. – 299 с.
  2. Ozisik, M. N. Inverse Heat Transfer / M. N. Ozisik, H. R. B. Orlande. – New York : Taylor & Francis, 2000. – 350 p.
  3. Marchuk, G. I. Mathematical Models in Environmental Problems / G. I. Marchuk. – Amsterdam : Elsevier Science Publishers, 1986. – Vol. 16. – 216 p.
  4. Prilepko, A. I. Methods for solving inverse problems in Mathematical Physics / A. I. Prilepko, D. G. Orlovsky, I. A. Vasin. – New-York : Marcel Dekker, Inc., 1999. – 744 p.
  5. Glagolev, M. V. Determination of gas exchange on the border between ecosystem and atmosphere: inverse modeling / M. V. Glagolev, A. F. Sabrekov // Mathematical Biology and Bioinformatics. – 2012. – Vol. 7, № 1. – P. 81–101.
  6. Sabrekov, A. F. Determination of the specific flux of methane from soil using inverse modeling based on conjugate equations / A. F. Sabrekov, M. V. Glagolev, I. E. Terentyeva // Reports of the International Conference «Mathematical Biology and Bioinformatics» / ed. V. D. Lakhno. – Pushchino : IMPB RAS, 2018. – Vol. 7. – P. e94.
  7. Assessment of methane emission from measured concentrations in the atmospheric surface layer / A. I. Borodulin, B. D. Desyatkov, G. A. Makhov, S. R. Sarmanaev // Russian meteorology and hydrology. – 1997. – № 1. – P. 49–55.
  8. Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil / F. Murguia-Flores, S. Arndt, A. L. Ganesan [et al.] // Geoscientific Model Development. – 2018. – Vol. 11. – P. 2009–2032.
  9. Identification of the methane consumption rate in soils by the inverse problem method / A. F. Sabrekov, M. V. Glagolev, I. E. Terentyeva, S. Yu. Mochenov // Reports of the International Conference «Mathematical Biology and Bioinformatics» / ed. V. D. Lakhno. – Pushchino : IMPB RAS, 2018. – Vol. 7. – P. 951–955.
  10. Идентификация скорости потребления метана в почвах методом обратной задачи / А. Ф. Сабреков, М. В. Глаголев, И. Е. Терентьева, С. Ю. Моченов // Материалы VI конференции «Математическое моделирование в экологии». – Пущино, 2019. – С. 179–180.
  11. Prather, M. J. Overexplaining or underexplaining methane’s role in climate change / M. J. Prather, C. D. Holmes // Proceedings of the National Academy of Sciences. – 2017. – Vol. 114. – P. 5324–5326.
  12. Прилепко, А. И. О разрешимости обратных краевых задач определения коэффициента перед младшей производной в параболическом уравнении / А. И. Прилепко, В. В. Соловьев // Дифференциальные уравнения. – 1987. – Т. 23, № 1. – С. 136–143.
  13. Prilepko, A. I. Inverse Source and Coefficient Problems for Elliptic and Parabolic Equations in Holder and Sobolev Spaces / A. I. Prilepko, A. B. Kostin, V. V. Solov’ev // Journal of Mathematical Sciences. – 2019. – Vol. 237, № 3. – P. 576–594.
  14. Choulliy, M. Generic well-posedness of an inverse parabolic problem – the Hölder-space approach / M. Choulliy, M. Yamamoto // Inverse Problems. – 1996. – Vol 12. – P. 195–205.
  15. Choulliy, M. Inverse problem for a semilinear parabolic equation / M. Choulliy // Inverse Problems. – 1994. – Vol. 10. – P. 1123–1132.
  16. Kozhanov, A. I. Parabolic Equations with an Unknown Absorption Coefficient / A. I. Kozhanov // Doklady Mathematics. – 2006. – Vol. 74, № 1. – P. 573–576.
  17. Кожанов, А. И. Параболические уравнения с неизвестным коэффициентом поглощения / А. И. Кожанов // Вестник Челябинского государственного университета. Математика. Механика. Информатика. – 2011. – № 13. – С. 5–19.
  18. Hao, D. N. A noncharacteristic Cauchy problem for linear parabolic equation and related inverse problems / D. N. Hao // Inverse Problems. – 1994. – Vol. 10. – P. 295–315.
  19. Beretta, E. Identifying a space dependent coefficient in a reaction-diffusion equation / E. Beretta // Inverse Problems and Imaging. – 2011. – Vol. 5, № 2. – P. 285–296.
  20. Kamynin, V. L. The inverse problem of determining the lower-order coefficient in parabolic equations with integral observation / V. L. Kamynin // Mathematical Notes. – 2013. – Vol. 94, № 2. – P. 205–213.
  21. Pyatkov, S. G. Identification of thermophysical parameters in mathematical models of heat and mass transfer / S. G. Pyatkov // Journal of Computational and Engineering Mathematics. – 2022. – Vol. 9, № 2. – P. 52–66.
  22. Пятков, С. Г. О некоторых классах линейных обратных задач для параболических систем уравнений / С. Г. Пятков, Е. И. Сафонов // Сибирские электронные известия. – 2014. – Т. 11. – С. 777–799. – URL: http://semr.math.nsc.ru/v11/p777-799.pdf (дата обращения: 15.08.2025).
  23. Pyatkov, S. G. Inverse problems of recovering lower-order coefficients from boundary integral data / S. G. Pyatkov, O. A. Soldatov // Axioms. – 2025. – Vol. 14, № 2. – P. 116.
  24. Pyatkov, S. Coefficient inverse problems of identification of thermophysical parameters from boundary integral data / S. Pyatkov, T. Pronkina // Journal of Mathematical Sciences. – 2024. – Vol. 282, № 2. – P. 241–252.
  25. Вабищевич, П. Н. Вычислительная идентификация младшего коэффициента параболического уравнения / П. Н. Вабищевич, В. И. Васильев // Доклады академии наук. Математика. – 2014. – Т. 455, № 3. – С. 258–260.
  26. Hussein, M. S. Simultaneous determination of time-dependent coefficients and heat source / M. S. Hussein, D. Lesnic // International Journal for Computational Methods in Engineering Science and Mechanics. – 2016. – Vol. 17, № 5-6. – P. 401–411.
  27. Mamonov, A. V. Point source identification in nonlinear advection-diffusion-reaction systems / A. V. Mamonov, Y-H. R. Tsai // Inverse Problems. – 2013. – Vol. 29, № 3. – P. 1–26.
  28. Triebel, H. Interpolation theory. Functional spaces. Differential Operators / H. Triebel. – Berlin : VEB Deutscher Verlag der Wissenschaften, 1978. – 532 p.
  29. Ladyzhenskaya, O. A. Linear and Quasilinear Equations of Parabolic Type / O. A. Ladyzhenskaya, N. N. Uraltseva, V. A. Solonnikov. – Providence : American Mathematical Society, 1968. – 648 p.
  30. Denk, R. Optimal L_p-L_q-estimates for parabolic boundary value problems with inhomogeneous data / R. Denk, M. Hieber, J. Prüss // Mathematische Zeitschrift. – 2007. Vol. 257, № 1. – P. 193–224.
  31. Meyries, M. Maximal regularity with temporal weights for parabolic problems with inhomogeneous boundary conditions / M. Meyries, R. Schnaubert // Mathematische Nachrichten. – 2012. – Vol. 285, № 8-9. – P. 1032–1051.
  32. Hummel, F. Elliptic and parabolic boundary value problems in weighted function spaces / F. Hummel, N. Lindemulder // Potential Analysis. – 2022. – Vol. 57. – P. 601–669.
  33. Liebermann, G. M. Second order parabollic differential equations / G. M. Liebermann. – Singapure : World Scientific Publishing Co. Pte. Ltd., 2005. – 452 p.
  34. Linear and Quasilinear Parabolic Problems : Vol. II: Function Spaces / H. Amann. – Cham : Springer Nature Switzerland AG, 2019. – 462 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Yugra State University

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».