Effect of gelatin powder, almond shell, and recycled aggregates on chemical and mechanical properties of conventional concrete
- Authors: Hematibahar M.1, Esparham A.2, Vatin N.I.3, Kharun M.I.1, Gebre T.H.4
-
Affiliations:
- National Research Moscow State University of Civil Engineering
- University of Tehran
- Peter the Great St. Petersburg Polytechnic University
- RUDN University
- Issue: Vol 19, No 2 (2023)
- Pages: 233-250
- Section: Construction materials and products
- URL: https://journals.rcsi.science/1815-5235/article/view/325848
- DOI: https://doi.org/10.22363/1815-5235-2023-19-2-233-250
- EDN: https://elibrary.ru/DKBCLX
- ID: 325848
Cite item
Full Text
Abstract
The objective of the research is to study the effect of different additives on the conventional concrete. In this term, three types of materials have been added to the concrete: gelatin powder as the binder, recycled aggregates, and almond shell as the fine and coarse aggregates. Several experiments have been made tо determine physical and mechanical properties, such as test for compressive and tensile strengths, for impact loading strength, durability test (water absorption) and deep penetration tests. Moreover, the microstructure results for the new type of concrete have been studied by means of scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDXS). The results show that when 70 kg of gelatin powder is added to 1 m3 of concrete, the concrete’s compressive strength and tensile strength are improved more than 22%; during impact loading the first and ultimate cracks are 11 and 129 by numbers, and the first and ultimate cracks’ strength is more than 223 and 2346 J respectively. The durability of sample from concrete with additional gelatin has been improved. SEM results illustrate that the weakness of almond shell concrete is related to cracks and voids between the cement matrix and almond shell. The voids of gelatin concrete are higher than that of conventional concrete. The conventional concrete has smooth crystals, and gelatin concrete has sharp and cubic crystals. EDXS results show that chemical content of these two types of concrete is different: conventional concrete contains silicon, while EDXS results show that chemical content of these two types of concrete is different: conventional concrete contains silicon, while gelatin concrete contains calcium and also C-S-H gel is generated in it.
About the authors
Mohammad Hematibahar
National Research Moscow State University of Civil Engineering
Author for correspondence.
Email: eng.m.hematibahar1994@gmail.com
ORCID iD: 0000-0002-0090-5745
PhD student, Department of Reinforced Concrete and Stone Structures
Moscow, Russian FederationAlireza Esparham
University of Tehran
Email: alireza.esp110@yahoo.com
ORCID iD: 0000-0001-7278-3479
PhD student
Islamic Republic of IranNikolai I. Vatin
Peter the Great St. Petersburg Polytechnic University
Email: vatin@mail.ru
ORCID iD: 0000-0002-1196-8004
D.Sc. (Eng.), Professor, Higher School of Industrial Civil and Road Construction
St. Petersburg, Russian FederationMakhmud I. Kharun
National Research Moscow State University of Civil Engineering
Email: miharun@mail.ru
ORCID iD: 0000-0002-2773-4114
Candidate of Technical Sciences, Associate Professor, Department of Reinforced Concrete and Stone Structures
Moscow, Russian FederationTesfaldet H. Gebre
RUDN University
Email: tesfaldethg@gmail.com
ORCID iD: 0000-0002-7168-5786
PhD, assistant, Department of Civil Engineering, Academy of Engineering
Moscow, Russian FederationReferences
- Forouzandeh J.M., Jahangiri A., Jamekhorshid A. Experimental investigation on the durability of metakaolin-based geopolymer concrete in aggressive environments. Research Square. 2022. https://doi.org/10.21203/rs.3.rs-2247685/v1
- Abdollahnejad Z., Kheradmand M., Pacheco-Torgal F. Short-term compressive strength of fly ash and waste glass alkali-activated cement based binder (AACB) mortars with two biopolymers. Journal of Materials in Civil Engineering. 2017;29(7). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001920
- Aliabdo A.A.M., Abd A.E., Emam A.M. Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete. Construction and Building Materials. 2019;197:339-355. https://doi.org/10.1016/j.conbuildmat.2018.11.086
- Kuri J.C., Hosan A., Shaikh F.U.A., Biswas W.K. The effect of recycled waste glass as a coarse aggregate on the properties of Portland cement concrete and geopolymer concrete. Buildings. 2023;13(3):586. https://doi.org/10.3390/buildings13030586
- He Z., Hu H., Casanova I., Liang C., Du S. Effect of shrinkage reducing admixture on creep of recycled aggregate concrete. Construction and Building Materials. 2020;254:119312. https://doi.org/10.1016/j.conbuildmat.2020.119312
- Guedes M., Evangelista L., de Brito J., Ferro A.C. Microstructural characterization of concrete prepared with recycled aggregates. Microscopy and Microanalysis. 2013;19(5):1222-1230. https://doi.org/10.1017/S1431927613001463
- Imtiaz I., Kashif-ur-Rehman S., Alalou W., Nazir K., Javed M., Aslam F., Musarat M. Life cycle impact as-sessment of recycled aggregate concrete, geopolymer concrete, and recycled aggregate-based geopolymer concrete. Sustainability. 2021;13(24):13515. https://doi.org/10.3390/su132413515
- Zhang J., Zhao Y., Li X., Li Y., Dong H. Experimental study on seismic performance of recycled aggregate concrete shear wall with high-strength steel bars. Structures. 2021;33:1457-1472. https://doi.org/10.1016/j.istruc.2021.05.033
- Waqas R.M., Butt F., Danish A., Alqurashi M., Mosaberpanah M.A., Masood B., Hussein E.E. Influence of bentonite on mechanical and durability properties of high-calcium fly ash geopolymer concrete with natural and recycled aggregates. Materials. 2021;14(24):7790. https://doi.org/10.3390/ma14247790
- Gunasekaran K., Annadurai R., Kumarb P.S. Study on reinforced lightweight coconut shell concrete beam behavior under shear. Materials and Design. 2013;50:293-301. http://doi.org/10.1016/j.matdes.2013.03.022
- Galishnikova V.V., Elroba S.M., Dayoub N., Sakna A. Use of natural compounds as a nutrition for bacteria in self-healing mortar. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(1):54-63. http://doi.org/10.22363/1815-5235-2022-18-1-54-63
- Gunasekaran K., Kumar P. S., Lakshmipathy M. Mechanical and bond properties of coconut shell concrete. Construction and Building Materials. 2011;25:92-98. https://doi.org/10.1016/j.conbuildmat.2010.06.053
- Hilal N., Sahab M.-F., Mohammad Ali T.-K. Fresh and hardened properties of lightweight self-compacting concrete containing walnut shells as coarse aggregate. Journal of King Saud University. Engineering Science. 2020;(33):364-372. https://doi.org/10.1016/j.jksues.2020.01.002
- Alaneme G.U., Mbadike E.M. Experimental investigation of Bambara nutshell ash in the production of concrete and mortar. Innovative Infrastructure Solutions. 2021;6:66. https://doi.org/10.1007/s41062-020-00445-1
- Kong J., Ni S., Guo C., Chen M., Quan H. Impacts from waste oyster shell on the durability and biological attachment of recycled aggregate porous concrete for artificial reef. Materials. 2022;15:6117. https://doi.org/10.3390/ ma15176117
- Raja K.C.P., Thaniarasu I., Elkotb M.A., Ansari K., Saleel C.A. Shrinkage study and strength aspects of concrete with foundry sand and coconut shell as a partial replacement for coarse and fine aggregate. Materials. 2021;14:7420. https://doi.org/10.3390/ma14237420
- Soriano L., Font A., Tashima M.M., Monzó J., Borrachero M.-V., Bonifácio T., Payá J. Almond-shell biomass ash (ABA): a greener alternative to the use of commercial alkaline reagents in alkali-activated cement. Construction and Building Materials. 2021;290:123251. https://doi.org/10.1016/j.conbuildmat.2021.123251
- Bigi A., Bracci B., Panzavolta S. Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials. 2004;25:2893-2899. https://doi.org/10.1016/j.biomaterials.2003.09.059
- Nuaklong P., Wongsa A., Sata V., Boonserm K., Sanjayan J., Chindaprasirt P. Properties of high-calcium and low-calcium y ash combination geopolymer mortar containing recycled aggregate. Heliyon. 2019;5:e02513. https://doi.org/10.1016/j.heliyon.2019.e02513
- Kumar C.A., Gope P.C., Singh V.K., Verma A., Rajiv Suman A. Thermal analysis of epoxy-based coconut fiber-almond shell particle reinforced bio composites. advances in manufacturing science and technology. 2014;38(2). https://doi.org/10.2478/amst-2014-0009
- Erofeev V.T., Kaznacheev S.V., Pankratova E.V., Seleznev V.A., Tyuryahina T.P. Physical and mechanical properties of pre-bound aggregate composites. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(5):399-406. https://doi.org/10.22363/1815-5235-2022-18-5-399-406
- Frolov K.E. Experimental studies of reinforced concrete structures of hydraulic structures strengthened with composite materials. Structural Mechanics of Engineering Constructions and Buildings. 2019;15(3):237-242. https://doi.org/10.22363/1815-5235-2019-15-3-237-242
- Kharun M., Ehsani A., Nasimi S., Gebre T.H. Properties and behavior of light hydrophobic concrete. Structural Mechanics of Engineering Constructions and Buildings. 2021;17(3):299-307. https://doi.org/10.22363/1815-5235-2021-17-3-299-307
- Rehman W., Majeed A., Mehra R., Bhushan S., Rani P., Chand K., Bast F. Gelatin: a comprehensive report covering its indispensable aspects. Natural Polymers: Derivatives, Blends and Composites. Nova Science Publishers; 2016. p. 209-222.
- Kharun M., Al Araza H.A.A., Hematibahar M., Al Daini R., Manoshin A.A. Experimental study on the effect of chopped basalt fiber on the mechanical properties of high-performance concrete. AIP Conference Proceedings. 2022;1:2559. https://doi.org/10.1063/5.0099042
- Hematibahar M. Crack resistance in basalt fibred high-performance concrete (M.Sc. thesis). Moscow: RUDN University; 2021.
- Hasanzadeh A., Vatin N.I., Hematibahar M., Kharun M., Shooshpasha I. Prediction of the mechanical properties of basalt fiber reinforced high-performance concrete using machine learning techniques. Materials. 2022;15(20):7165. https://doi.org/10.3390/ma15207165
- Hematibahar M., Vatin N.I., Alaraza H.A.A., Khalilavi A., Kharun M. The prediction of compressive strength and compressive stress-strain of basalt fiber reinforced high-performance concrete using classical programming and logistic map algorithm. Materials. 2022;19(15):6975. https://doi.org/10.3390/ ma15196975
Supplementary files
