Algorithm for calculating the problem of unilateral frictional contact with an increscent external load parameter
- Authors: Popov A.N.1, Lovtsov A.D.1
-
Affiliations:
- Pacific National University
- Issue: Vol 19, No 5 (2023)
- Pages: 491-501
- Section: Analytical and numerical methods of analysis of structures
- URL: https://journals.rcsi.science/1815-5235/article/view/325814
- DOI: https://doi.org/10.22363/1815-5235-2023-19-5-491-501
- EDN: https://elibrary.ru/HSRVMZ
- ID: 325814
Cite item
Full Text
Abstract
The subject of the study is the contact interaction of deformable elements of linear complementarity problem (LCP). To solve the linear complementarity problem, the Lemke method with the introduction of an increasing parameter of external loading is used. The proposed approach solves the degenerated matrix in a finite number of steps, while the dimensionality of the problem is limited to the area of contact. To solve the problem, the initial table of the Lemke method is generated using the contact matrix of stiffness and the contact load vector. The unknowns in the problem are mutual displacements and interaction forces of contacting pairs of points of deformable solids. The proposed approach makes it possible to evaluate the change in working schemes as the parameter of external load increases. The features of the proposed formulation of the problem are shown, the criteria for stopping the stepwise process of solving such problems are considered. Model examples for the proposed algorithm are given. The algorithm has shown its efficiency in application, including for complex model problems. Recommendations on the use of the proposed approach are given.
About the authors
Alexander N. Popov
Pacific National University
Author for correspondence.
Email: SanyaPov@mail.ru
ORCID iD: 0000-0001-6762-5476
Lecturer-researcher at the Higher school of Industrial and Civil Engineering
Khabarovsk, Russian FederationAlexander D. Lovtsov
Pacific National University
Email: lad@pnu.edu.ru
ORCID iD: 0000-0001-5050-466X
Dr. of Engineering, Professor at the Higher school of Industrial and Civil Engineering
Khabarovsk, Russian FederationReferences
- Migórski S. Optimal Control of History-Dependent Evolution Inclusions with Applications to Frictional Contact. Journal of Optimization Theory and Applications. 2020;185:574-596. https://doi.org/10.1007/s10957-020-01659-0
- Kikuchi N., Oden J.T. Contact Problems in Elasticity. Philadelphia: Society for Industrial and Applied Mathematics. 1988. https://doi.org/10.1137/1.9781611970845
- Duvaut G., Lions J.-L. Inequalities in Mechanics and Physics. Berlin, Heidelberg: Springer Berlin Heidelberg; 1976. https://doi.org/10.1007/978-3-642-66165-5
- Glowinski R., Lions J.-L., Trémolières R. Numerical Analysis of Variational Inequalities. Elsevier Science; 1981. https://doi.org/10.1016/S0168-2024(08)70201-7
- Kravchuk A.S. The variational method in contact problems. The present state of the problem and trends in its development. Journal of Applied Mathematics and Mechanics. 2009;73(3):351-357. https://doi.org/10.1016/j.jappmathmech. 2009.07.004
- Bathe K.J., Chaudhary A.A. A solution method for planar and axisymmetric contact problems. International Journal for Numerical Methods in Engineering. 1985;21:65-88. https://doi.org/10.1002/nme.1620210107
- Klarbring A. A mathematical programming approach to three-dimensional contact problems with friction. Computer Methods in Applied Mechanics and Engineering. 1986;58:175-200. https://doi.org/10.1016/0045-7825(86)90095-2
- Klarbring A. On discrete and discretized non-linear elastic structures in unilateral contact (stability, uniqueness and variational principles). International Journal of Solids and Structures. 1988;24(5):459-479. https://doi.org/10.1016/00207683(88)90002-9
- Hlaváček J., Haslinger J., Necas J., Lovishek J. Solution of Variational Inequalities in Mechanics. New York: Springer; 1986. https://doi.org/10.1007/978-1-4612-1048-1
- Cottle R.W., Giannessi F., Lions J.L. Variational Inequalities and Complementary Problems in Mathematical Physics and Economics. New York: John Wiley; 1979.
- Eck C., Jarusek J., Krbec M. Unilateral Contact Problems. New York: CRC Press; 2005. https://doi.org/10.1201/ 9781420027365
- Reclitis G., Raivindran A., Regsdel K. Optimization in the technique. In 2 books, Part. 2. Moscow: Mir Publ.; 1986. Available from: http://padabum.com/d.php?id=39920 (Accessed 12.03.2023)
- Panagiotopoulos P.D. Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkhäuser: Boston-Base-Stuttgart; 1985. https://doi.org/10.1007/978-1-4612-5152-1
- Kravchuk A.S., Neittaanmäki P.J. Variational and Quasi-Variational Inequalities in Mechanics. Dordrecht: Springer Netherlands. 2007. Vol. 147. https://doi.org/10.1007/978-1-4020-6377-0
- Mitra G., Cottle R.W., Giannessi F., Lions J.L. Variational Inequalities and Complementarity Problems - Theory and Application. The Journal of the Operational Research Society. 1981;32(9):848. https://doi.org/10.2307/2581414
- Acary V., Brémond M., Huber O. On solving contact problems with coulomb friction: Formulations and numerical comparisons. Advanced Topics in Nonsmooth Dynamics: Transactions of the European Network for Nonsmooth Dynamics. 2018:375-457. https://doi.org/10.1007/978-3-319-75972-2_10
- Noor M.A., Noor K.I., Rassias M.T. New Trends in General Variational Inequalities. Acta Appl Math. 2020; 170(1):981-1064. https://doi.org/10.1007/S10440-020-00366-2/TABLES/3
- Vorovich I.I., Aleksandrov V.M. Contact Mechanics Interaction. Moscow: Fizmatlit Publ.; 2001. (In Russ.) Available From: https://www.rfbr.ru/rffi/ru/books/o_460?FILTER_ID=23@2. (accessed 12.03.2023).
- Raous M. Art of Modeling in Contact Mechanics. In: The Art of Modeling Mechanical Systems. Springer. 2016;570:203-276. https://doi.org/10.1007/978-3-319-40256-7_4
- Sofonea M., Matei A. Mathematical Models in Contact Mechanics. Cambridge: Cambridge University Press; 2012. https://doi.org/10.1017/CBO9781139104166
- Souleiman Y., Barboteu M. Numerical Analysis of a Sliding Frictional Contact Problem with Normal Compliance and Unilateral Contact. Open Journal of Modelling and Simulation. 2021;9:391-406. https://doi.org/10.4236/ojmsi.2021.94025
- Sofonea M., bin Xiao Y. Well-Posedness of Minimization Problems in Contact. Journal of Optimization Theory and Applications. 2021;188(3):650-672. https://doi.org/10.1007/s10957-020-01801-y
- Sofonea M., bin Xiao Y. Weak formulations of quasistatic frictional contact problems. Commun Nonlinear Sci Numer Simul. 2021;101:105888. https://doi.org/10.1016/J.CNSNS.2021.105888
- Sofonea M., Shillor M. Tykhonov Well-Posedness and Convergence Results for Contact Problems with UnilateralConstraints. Technologies. 2021;9(1):1. https://doi.org/10.3390/TECHNOLOGIES9010001
- Leturcq B., Tallec P. le, Pascal S., Fandeur O., Pacull J. NTFA inspired model order reduction including contactand friction. HAL open science. 2021. Available from: https://hal.archives-ouvertes.fr/hal-03202024 (accessed: 12.03.2023).
- Antolin P., Buffa A., Fabre M., Fabre M.A. A priori error for unilateral contact problems with Lagrange multipliersand IsoGeometric Analysis. HAL open science. 2018. Available from: https://hal.archives-ouvertes.fr/hal-01710816 (accessed: 12.03.2023).
- Parisch H. A consistent tangent stiffness matrix for three-dimensional non-linear contact analysis. Int Journal Numerical Methods in Engineering. 1989;28(8):1803-1812. https://doi.org/10.1002/nme.1620280807
- Sofonea M., Souleiman Y. Analysis of a sliding frictional contact problem with unilateral constraint. Mathematics and Mechanics of Solids. 2017;22(3):324-342. https://doi.org/10.1177/1081286515591304
- Lu L., Li L., Sofonea M. A generalized penalty method for differential variational-hemivariational inequalities. Acta Mathematica Scientia. 2022;42(1):247-264. https://doi.org/10.1007/S10473-022-0114-Z
- Arghir M., Benchekroun O. A simplified structural model of bump-type foil bearings based on contact mechanics including gaps and friction. Tribol Int. 2019;134:129-144. https://doi.org/10.1016/j.triboint.2019.01.038
- Peng L., Feng Z.Q., Joli P., Renaud C., Xu W.Y. Bi-potential and co-rotational formulations applied for real timesimulation involving friction and large deformation. Computational Mechanics. 2019;64(3):611-623. https://doi.org/10.1007/S00466-019-01672-9
- Lukashevich A.A. Computational modelling of stiffness and strength properties of the contact seam. Magazine of Civil Engineering. 2018;81(5):149-159. https://doi.org/10.18720/MCE.81.15
- Lukashevich A.A., Rozin L.A. On the decision of contact problems of structural mechanics with unilateralconstraints and friction by step-by-step analysis. Magazine of Civil Engineering. 2013;1(36):75-81. https://doi.org/10. 5862/MCE.36.9
- Gholami F., Nasri M., Kövecses J., Teichmann M. A linear complementarity formulation for contact problems withregularized friction. Mechanism and Machine Theory. 2016;105:568-582. https://doi.org/10.1016/J.MECHMACHTHEORY.2016.07.016
- Tasora A., Anitescu M. A fast NCP solver for large rigid-body problems with contacts, friction, and joints. Computational Methods in Applied Sciences. 2009;12:45-55. https://doi.org/10.1007/978-1-4020-8829-2_3
- Zheng H., Li X. Mixed linear complementarity formulation of discontinuous deformation analysis. International Journal of Rock Mechanics and Mining Sciences. 2015;75:23-32. https://doi.org/10.1016/j.ijrmms.2015.01.010
- Ignatyev A.V., Ignatyev V.A., Onischenko E.V. Analysis of Systems with Unilateral Constraints through the Finite Element Method in the Form of a Classical Mixed Method. Procedia Engineering. 2016;150:1754-1759. https://doi.org/10.1016/j.proeng.2016.07.166
- Morozov N.F., Tovstik P.Y. Bending of a two-layer beam with non-rigid contact between the layers. Journal of Applied Mathematics and Mechanics. 2011;75(1):77-84. https://doi.org/10.1016/j.jappmathmech.2011.04.012
- Berezhnoi D.V., Sagdatullin M.K. Calculation of interaction of deformable designs taking into account friction inthe contact zone by finite element method. Contemporary Engineering Sciences. 2015;8(23):1091-1098. https://doi.org/10.12988/ces.2015.58237
- Kudawoo A.D., Abbas M., De-Soza T., Lebon F., Rosu I. Computational Contact Problems: Investigations on the Robustness of Generalized Newton Method, Fixed-Point method and Partial Newton Method. Int J for Computational Methods in Engineering Science and Mechanics. 2018;19(4):268-282. https://doi.org/10.1080/15502287.2018.1502217
- Averin A.N., Puzakow A.Yu. Design of systems with uniateral constraints. Structural mechanics and structures. 2015;1(10):15-32. (In Russ.) Available from: http://nauteh-journal.ru/files/4403ce61-ea9d-4dcf-abbd-ac90a11aec39 (accessed: 12.04.2023).
- Fabre M., Pozzolini C., Renard Y. Nitsche-based models for the unilateral contact of plates. ESAIM: Mathematical Modelling and Numerical Analysis. 2021;55:941-967. https://doi.org/10.1051/M2AN/2020063
- Brogliato B., Kovecses J., Acary V. The contact problem in Lagrangian systems with redundant frictional bilateral and unilateral constraints and singular mass matrix. The all-sticking contacts problem. Multibody System Dynamics. 2020;48(2):151-192. https://doi.org/10.1007/S11044-019-09712-1
- Streliaiev Yu.M. A nonlinear boundary integral equations method for the solving of quasistatic elastic contactproblem with Coulomb friction. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences. 2016;20(2):306-327. (In Russ.) https://doi.org/10.14498/vsgtu1471
- Zhiltsov A.V. Modified duality scheme for numerical simulation of the contact between elastic bodies.Mathematical notes of NEFU. 2016;23(4):99-114. (In Russ.) Available from: http://www.mzsvfu.ru/index.php/mz/article/view/modified-duality-scheme-for-numerical-simulation-of-the-contact-between-elastic-bodies (accessed: 12.04.2023).
- Landenberger A., El-Zafrany A. Boundary element analysis of elastic contact problems using gap finite elements. Comput Struct. 1999;71(6):651-661. https://doi.org/10.1016/S0045-7949(98)00303-4
- Popov A., Lovtsov A. Frictional contact problem in building constructions analysis. Magazine of Civil Engineering. 2020;100(8):1-11. https://doi.org/10.18720/MCE.100.1
- Popov A N., Lovtsov A.D. Frictional contact in the linear complementarity problem with gaps account. Structural mechanics and analysis of constructions. 2021;297(4):36-43. https://doi.org/10.37538/0039-2383.2021.4.36.43
- Lemke C.E. Bimatrix Equilibrium Points and Mathematical Programming. Manage Sci. 1965;11(7):681-689. https://doi.org/10.1287/mnsc.11.7.681
- Lemke C.E. Some pivot schemes for the linear complementarity problem. Complementarity and Fixed Point Problems. 1978;7:15-35. https://doi.org/10.1007/bfb0120779
Supplementary files
