Experimental studies of reinforced concrete structures of hydraulic structures strengthened with prestressed transverse reinforcement

Capa

Citar

Texto integral

Resumo

Relevance. When repairing hydraulic structures, it is often necessary to face the task of strengthening them. Among the methods of strengthening retaining structures, the most interesting are those that allow to immediately include reinforcement elements in joint work with the structure and carry out work without removing the backfill soil from the rear edge. When choosing repair materials, attention should be paid to corrosion-resistant composite materials, the use of which in hydraulic engineering is not yet standardized, but the scope of their application is expanding every year. The main aim of experimental research is to strengthen the reinforced concrete structures of hydraulic structures, including those with interblock construction joints and transverse cracks, using prestressed transverse reinforcement. Methods. The investigations were carried out on a reinforced concrete model of a beam type reinforced with prestressed transverse reinforcement in the zone of inclined cracks formation. The model was made taking into account the typical tasks encountered during the repair of long-term operating retaining hydraulic structures with open seams and cracks, insufficient transverse reinforcement, low reinforcement coefficient, and initial deflection. Results. The task of strengthening a special reinforced concrete model using prestressed transverse reinforcement was realized. Experimental data were obtained on the nature of deformation and destruction, the opening of interblock construction joints and cracks, and the stresses in the reinforcement. Recommendations are given for strengthening the operated low-reinforced concrete structures of hydraulic structures with interblock construction joints with prestressed reinforcement.

Sobre autores

Oksana Zyuzina

B.E. Vedeneev All-Russia Research Institute of Hydraulic Engineering

Autor responsável pela correspondência
Email: ZyuzinaOV@vniig.ru

engineer of the 1st category, postgraduate student

21 Gzhatskaya St, Saint Petersburg, 195220, Russian Federation

Bibliografia

  1. Bellendir E.N., Rubin O.D., Lisichkin S.E., Zyuzina O.V. Experimental studies of prestress losses of basalt composite reinforcement as part of a concrete element. Power technology and engineering. 2020;(7):2–6. (In Russ.)
  2. Rubin O.D., Lisichkin S.E., Nikolaev V.B., Bashkirov D.S. The features of stress-deformation state of the lock of lock chambers walls. Vestnik MGSU (Proceedings of Moscow State University of Civil Engineering). 2019;14(4):473–483. (In Russ.) doi: 10.22227/1997-0935.2019.4.473-483.
  3. Regan P.J. An examination of dam failures vs. age of dams. Hydro review. 2010(June);29(4):62–68.
  4. Morgunov K.P., Ryabov G.G. Analiz vozmozhnyh prichin obrazovaniya treshchiny v levom ustoe nizhnej golovy shlyuza No. 2 Belousovskogo gidrouzla [Analysis of possible causes of establishment of a crack in the left stone of the lower head of the gateway of the bloсkout No. 2 of Belousovsky hydroelectric power station]. Proektirovanie, stroitel'stvo i ekspluataciya gidrotekhnicheskih sooruzhenij vodnyh putej [Design, construction and operation of hydraulic structures of waterways]: collection of conference materials. 2017;1:115–131. (In Russ.)
  5. Davidenko V.M., Shtilman V.B., Fotiev P.I. Substantiation of safety and reliability criteria for concrete and reinforced concrete building structures of hydraulic structures using modern materials and technologies for their protection and repair. Hydrotechnika. 2011;2(23):40–45. (In Russ.)
  6. Rubin O.D., Umnova R.V., Ni V.Ye. Usilenie ekspluatiruemyh podpornyh sooruzhenij [Strengthening maintained retaining structures]. Gidrotekhnicheskoe stroitel'stvo [Power technology and engineering]. 1989;(12):42–45. (In Russ.)
  7. Mason P.J. Dam engineering: the last 50 years, and the 50 years ahead. Hydropower & Dams. 2016;23(6):83–89.
  8. Kreuzer H. Dam safety and monitoring. Practical discussions tackle global issues in Montreux. Hydro 2016 report. Hydropower & Dams. 2016;23(6):119–120.
  9. Rubin O.D., Lisichkin S.E., Frolov K.E., Pashchenko F.A., Zyuzina O.V. The experimental research of the reinforced concrete retaining walls. Prirodoobustrojstvo. 2020;(1):72–79. (In Russ.)
  10. Rubin O.D., Lisichkin S.E., Balagurov V.B., Alexandrov A.V. New technology of HES repair using reinforcement with composite materials. Proceeding of the VNIIG. 2016;(280):3–9. (In Russ.)
  11. Hamed E., Bradford M.A. Flexural time-dependent cracking and post-cracking behaviour of FRP strengthened concrete beams. International Journal of Solids and Structures. 2012;49:1595–1607.
  12. Zhou Y., Gou M., Zhang F., Zhang Sh., Wang D. Reinforced concrete beams strengthened with carbon fiber reinforced polymer by friction hybrid bond technique: experimental investigation. Materials and Design. 2013;50:130–139.
  13. Selvachandran P., Anandakumar S., Muthuramu K.L. Deflection Behavior of Prestressed Concrete Beam using Fiber Reinforced Polymer (FRP) Tendon. The Open Civil Engineering Journal. 2016;(10):40–60.
  14. Zhu H., Yang Y. External Prestressing Bridge Reinforcement Technology Review. MATEC Web of Conferences. 2015;22:04028.
  15. Pavlović A., Donchev T., Petkova D., Limbachiya M., Almuhaisen R. Pretensioned BFRP reinforced concrete beams: flexural behaviour and estimation of initial prestress losses. MATEC Web of Conferences. 2019;289:09001.
  16. Zavgorodnev A.V., Umansky A.M., Bekker A.T., Borisov E.K. Prospects for the use of composite reinforcement in marine hydraulic engineering. Architecture and construction of the Far East: mining information and analytical bulletin (scientific and technical journal). Selected articles (special issue). 2014;(12):137–149.
  17. Becker A.T., Umansky A.M. Application of basalt-plastic reinforcement in the structures of offshore hydroengineering constructions. Proceeding of the VNIIG. 2016;(282):61–75. (In Russ).
  18. Onufriev N.M. Usilenie zhelezobetonnykh konstruktsii promyshlennykh zdanii i sooruzhenii [Strengthening of reinforced concrete structures of industrial buildings and structures]. Leningrad, Moscow: Stroyizdat Publ.; 1965. (In Russ).
  19. Lazouski Y.D. Experimental and theoretical study of strength of steel reinforced concrete elements reinforced the slicer area installing additional preliminary tense transverse reinforcement. Bulletin of Polotsk State University. Series F: Building. Applied Sciences. 2013;(16):51–60. (In Russ.)
  20. SP 63.13330.2012. Betonnye i zhelezobetonnye konstruktsii. Osnovnye polozheniya. Aktualizirovannaya redaktsiya SNiP 52-01-2003 [Concrete and reinforced concrete structures. Basic provisions. Updated edition SNiP 52-01-2003]. Мoscow; 2013. (In Russ.)
  21. SP 295.1325800.2017. Konstruktsii betonnye, armirovannye polimernoi kompozitnoi armaturoi. Pravila proektirovaniya [Concrete structures, reinforced with polymer composite reinforcement. Design rules]. Мoscow: Standartinform Publ.; 2017. (In Russ.)
  22. GOST 31938-2012. Armatura kompozitnaya polimernaya dlya armirovaniya betonnykh konstruktsii. Obshchie tekhnicheskie usloviya [Composite polymer reinforcement for reinforcing concrete structures. General specifications]. Мoscow: Standartinform Publ.; 2014. (In Russ.)
  23. Okhapkin G.V., Zyuzina O.V. An Approach to the Restoration of Metal Water Conduits of Hydraulic Structures. Power technology and engineering. 2020;53(5):542–544. https://doi.org/10.1007/s10749-020-01112-2
  24. Dong Yang, Jiwen Zhang, Shoutan Song, Fei Zhou, Chao Wang. Experimental investigation on the creep property of carbon fiber reinforced polymer tendons under high stress levels. Materials. 2018;11(11):2273. https://doi.org/10.3390/ ma11112273
  25. SP 63.13330.2012. Betonnye i zhelezobetonnye konstrukcii gidrotekhnicheskih sooruzhenij. Aktualizirovannaya redakciya SNiP 2.06.08-87 (s Izmeneniem № 1) [Concrete and reinforced concrete structures of hydraulic structures. Updated version of SNiP 2.06.08-87 (with Amendment No. 1)]. Мoscow; 2013. (In Russ.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».