Результаты лабораторных исследований укрепления грунта земляного полотна с помощью модификатора

Обложка

Цитировать

Полный текст

Аннотация

Актуальные современные тенденции в дорожном строительстве - это и увеличение интенсивности движения, и грузоподъемности автомобильного транспорта, а также расширение сети дорог, в том числе и местных, выдвигают задачу не только повышения долговечности дорожных конструкций, но и применения при строительстве автомобильных дорог местных материалов и грунтов. Для укрепления грунтов основания дорог разработано несколько методов. Также производится множество поверхностно-активных веществ, модификаторов и добавок для укрепления земляного полотна. Многие из них не показали свою эффективность на практике. Поэтому существует необходимость проведения множества лабораторных и полевых исследований по этой теме. Для изучения влияния модификатора на грунт дорожного полотна проведены лабораторные исследования. Определяли тип грунта и его максимальную плотность при оптимальной влажности. На основании этого в состав грунта вводился цемент и модификатор, определялись показатели плотности и прочности на сжатие. Получены результаты сканирующего электронного микроскопа для изучения влияния модификатора на грунт земляного полотна. Лабораторные исследования и СЭМ-анализа показали, что добавление модификатора на грунт приводит к увеличению его максимальной плотности, значительному увеличению прочности на сжатие и что модификатор служит для улучшения свойств связывания, образуя кристаллическую связь с цементом.

Об авторах

Рашидбек Мансуржонович Худайкулов

Ташкентский государственный транспортный университет

Email: Rashidbek_19_87@mail.ru
ORCID iD: 0009-0008-0133-2361

PhD., профессор кафедры изыскания и проектирование автомобильных дорог

Ташкент, Республика Узбекистан

Дилшод Эргаш угли Аралов

Ташкентский государственный транспортный университет

Автор, ответственный за переписку.
Email: dilshod.aralov.96@mail.ru
ORCID iD: 0009-0003-1707-1788

аспирант кафедры изыскания и проектирование автомобильных дорог

Ташкент, Республика Узбекистан

Список литературы

  1. Hudaykulov R.M., Salimova B.D., Aralov D.E. Soil stabilizer. Road construction and its engineering support: proceedings of the III International Scientific and Technical Conference. Minsk: BNTU, 2022:26–28. (In Russ.)
  2. Makhmudova D.A. Study water-thermal regime of earth linen of automobile roads. Universum: Technical Sciences. 2021;5–2(86):83–86. (In Russ.) EDN: ZOZDSM
  3. Makhmudova D.A. Results of a study of soil moisture in road subgrades. Bulletin of the Kyrgyz State University of Construction, Transport and Architecture named after. N. Isanova. 2016;1(51):103–106. (In Russ.) EDN VURNYJ
  4. Hudaykulov R.M., Salimova B.D., Aralov D.E. Effectiveness of the use of innovative materials in the strengthening of highway subgrades. International Scientific-Practical Conference on Technical and Technological Development Prospects: Problems and Solutions (Collection 1). 2023. Vol. 1, no. 1.
  5. Hudaykulov R.M., Mirzayev T.L. The use of stabilizers to improve the strength of the soil foundation of roads. Russian journal of transport engineering. 2019;6(1). (In Russ.) https://doi.org/10.15862/14SATS119
  6. Egorov G.V., Andreeva A.V., Burenina O.N. Improved soil with use of the stabilizer for roads building in conditions of the North. Vestnik of the M.K. Ammosov North-Eastern Federal University. 2013;10(4):41–45. (In Russ.) EDN: RURDCP
  7. Brekhman A.I., Vdovin E.A., Mavliev L.F. Updating of staked priming coats at building of rural highways. News of the Kazan State University of Architecture and Engineering. 2010;2(14):313–318. (In Russ.) EDN: NUHSYH
  8. John R. Bowman P.E. Efficacy of road bond end condor as soil stabilizers. Final Report ~ Fhwa-Ok-13-06. University of Oklahoma, 2013;2242. Available from: https://rosap.ntl.bts.gov/view/dot/31441 (accessed: 11.09.2023).
  9. Chudinov S.A. Increase productivity soil reinforcement of portland cement with a stabilizing additive. Modern problems of science and education. 2014;5:163–163. (In Russ.) EDN: SZVKCD
  10. Nigitha D., Prabhanjan N. Efficiency of cement and lime in stabilizing the black cotton soil. Materials Today: Proceedings. 2022;68(5):1588–1593. https://doi.org/10.1016/j.matpr.2022.07.286
  11. Prusinski J.R., Bhattacharja S. Effectiveness of portland cement and lime in stabilizing clay soils. Transportation Research Record. 1999;1652(1):215–227. https://doi.org/10.3141/1652-28
  12. Solihu H. Cement Soil Stabilization as an Improvement Technique for Rail Track Subgrade, and Highway Subbase and Base Courses: A Review. Journal of Civil & Environmental Engineering. 2020;10:3. https://doi.org/10.37421/ jcde.2020.10.344
  13. Dmitrieva T.V., Kutsyna N.P. Application of stabilizers in road construction to strengthen soils in the Belgorod region. Science and innovation in construction: Collection of reports of the International Scientific and Practical Conference (on the 165th anniversary of the birth of V.G. Shukhov), Belgorod, April 17, 2018. Belgorod. 2018:356–361. (In Russ.) EDN: VQZGKQ
  14. Dmitrieva T.V., Markova I.Yu., Strokova V.V., Kutsyna N.P. Efficiency of stabilizers of various composition for strengthening the soil with a mineral binder. Construction materials and products. 2020;3(1):30–38. (In Russ.) https://doi.org/10.34031/2618-7183-2020-3-1-30-38
  15. Yuan B., Chen W., Zhao J., Yang F., Luo Q., Chen T. The Effect of Organic and Inorganic Modifiers on the Physical Properties of Granite Residual Soil. Hindawi Advances in Materials Science and Engineering. 2022;2022:9542258. https://doi.org/10.1155/2022/9542258
  16. Gupta D., Kumar A. Strength characterization of cement stabilized and fiber reinforced clay-pond ash mixes. International Journal of Geosynthetics and Ground Engineering. 2016;2:32. https://doi.org/10.1007/s40891-016-0069-z
  17. Kapogianni E., Sakellariou M., Laue J., Springman S. Investigation of the mechanical behaviour of the interface between soil and reinforcement, via experimental and numerical modeling. Procedia Engineering. 2016;143:419–426. https://doi.org/10.1016/j.proeng.2016.06.053
  18. Namjoo A.M., Jafari K., Toufigh V. Effect of particlesize of sand and surface properties of reinforcement on sand geosynthetics and sand-carbon fiber polymer interface shear behavior. Transportation Geotechnics. 2020;24:100403. https://doi.org/10.1016/j.trgeo.2020.100403
  19. Madhusudhan B.N., Baudet B.A., Ferreira P.M.V., Sammonds P. Performance of fiber reinforcement in completely decomposed granite. Journal of Geotechnical and Geoenvironmental Engineering. 2017;143(8):04017038. https://doi.org/ 10.1061/(ASCE)GT.1943-5606.0001716
  20. Čalkovský M.E.M. Material Contrast by Scanning Electron Microscopy and Low-Energy Scanning Transmission Electron Microscopy. Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.), Dissertation. 2022.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».