Деформирование цилиндрической оболочки из стали 9Х2 при сложном нагружении
- Авторы: Черемных С.В.1
-
Учреждения:
- Тверской государственный технический университет
- Выпуск: Том 20, № 2 (2024)
- Страницы: 159-169
- Раздел: Расчет тонких упругих оболочек
- URL: https://journals.rcsi.science/1815-5235/article/view/325896
- DOI: https://doi.org/10.22363/1815-5235-2024-20-2-159-169
- EDN: https://elibrary.ru/DZDZTS
- ID: 325896
Цитировать
Полный текст
Аннотация
Развитие строительной индустрии в части проектирования и изготовления оболочечных конструкций нестандартных архитектурных форм, выполненных из материалов со сложными механическими свойствами, требует применения современных систем комплексного автоматизированного проектирования с поэтапным моделированием деформирования элементов конструкций в условиях эксплуатации, а также учета их последующей работы после накапливания в процессе пластического деформирования остаточных деформаций. Цель исследования - моделирование процесса пластического деформирования тонкостенной цилиндрической оболочки из стали 9Х2 ГОСТ 5950-2000 (Межгосударственный стандарт) под действием сил сжатия и кручения с теоретическими расчетами на основе общей теории упругопластических процессов А.А. Ильюшина. Представлены уравнения определяющих соотношений теории упругопластических процессов А.А. Ильюшина для траектории сложного нагружения и деформирования материалов в девиаторном пространстве деформаций. На основании представленных решений, согласно реализуемой в модели траектории деформирования оболочки из стали 9Х2, построены графики зависимости векторных и скалярных свойств материала от величины длины дуги траектории деформации. Cделан вывод о степени упрочнения рассматриваемого материала и его зависимости от величины угла сближения в точке излома сложной траектории, а также приведены графики изменения определяющих функций пластичности в зависимости от приращения длины дуги траектории деформирования материала.
Об авторах
Степан Валерьевич Черемных
Тверской государственный технический университет
Автор, ответственный за переписку.
Email: cheremnykh_s.v@mail.ru
ORCID iD: 0000-0002-4620-117X
SPIN-код: 9323-8370
кандидат технических наук, доцент кафедры конструкций и сооружений
Тверь, РоссияСписок литературы
- Zubchaninov V.G. On the main hypotheses of the general mathematical theory of plasticity and the limits of theirapplicability. Proceedings of the Russian Academy of Sciences. Solid State Mechanics. 2020;6:73–81. (In Russ.) https://doi.org/10.31857/S0572329920060173
- Ilyushin A.A. Mechanics of a continuous medium. Moscow: Publishing House of Moscow State University, 1990. (In Russ.)
- Bondar V.S., Abashev D.R., Fomin D.Y. Comparative analysis of theories of plasticity under complex loading. Problems of strength and plasticity. 2022;84(4):493–510. (In Russ.) https://doi.org/10.32326/1814-9146-2022-84-4-493-510
- Bondar V.S., Abashev D.R., Petrov V.K. Construction of the Theory of Plasticity Irrelative of the Loading Surfaceand Associated Flow Law. Strength of Materials. 2021;53(4):550–558. https://doi.org/10.1007/s11223-021-00316-9
- Bondar V.S., Abashev D.R., Fomin D.Y. Theories of plasticity under complex loading along spatial trajectories ofdeformations. Bulletin of the Perm National Research Polytechnic University. Mechanics. 2021;4:41–48. (In Russ.) https://doi.org/10.15593/perm.mech/2021.4.05
- Bondar V.S., Abashev D.R., Fomin D.Y. Theories of plasticity under complex loading along flat deformationtrajectories. Bulletin of the Perm National Research Polytechnic University. Mechanics. 2021;3:35–47. (In Russ.) https://doi.org/10.15593/perm.mech/2021.3.04
- Gultyaev V.I., Bulgakov A.N. Experimental study of elastic-plastic deformation of structural materials on anautomated test complex of a CH-computer. Bulletin of the I.Ya. Yakovlev Chuvash State Pedagogical University. Series: Mechanics of the limit state. 2023;2(56):53–64. (In Russ.) https://doi.org/10.37972/chgpu.2023.56.2.006
- Zubchaninov V.G., Gultyaev V.I., Alekseev A.A., Savrasov I.A. Verification of the postulate of isotropy duringdeformation of alloy B95 along two-link polyline trajectories. Bulletin of the Moscow University. Series 1: Mathematics. Mechanics. 2023;5:47–52. (In Russ.) https://doi.org/10.55959/MSU0579-9368-1-64-5-7
- Zubchaninov V.G., Alekseev A.A., Gultyaev V.I., Alekseeva E.G. Processes of complex loading of structural steelalong a five-link piecewise polyline deformation trajectory. Bulletin of Tomsk State University. Mathematics and mechanics. 2019;61:32–44. (In Russ.) https://doi.org/10.17223/19988621/61/4
- Alekseev A., Zubchaninov V., Gultiaev V., Alekseeva E. Modeling of elastoplastic deformation of low-carbonsteel along multi-link plane strain trajectories. AIP Conference Proceedings. 2021;020001. https://doi.org/10.1063/5.0059630
- Zubchaninov V.G., Alekseev A.A., Gultiaev V.I., Alekseeva E.G. Modeling of elastoplastic deformation ofstructural steel by a trajectory containing three circles touching internally. Materials Physics and Mechanics. 2019;42(5): 528–534. https://doi.org/10.18720/MPM.4252019_6
- Bondar V.S., Abashev D.R. Refining the thermoplasticity theory for modeling of cyclic nonisothermic loadingprocesses. Journal of Mechanics of Materials and Structures. 2021;16(4):501–510. https://doi.org/10.2140/jomms.2021.16.501
- Bondar V.S., Abashev D.R. Mathematical Modeling of the Monotonic and Cyclic Loading Processes. Strength of Materials. 2020;52(3):366–373. https://doi.org/10.1007/s11223-020-00186-7
- Bondar V.S., Dansin V.V., Vu L.D., Duc N.D. Constitutive modeling of cyclic plasticity deformation and low– high-cycle fatigue of stainless steel 304 in uniaxial stress state. Mechanics of Advanced Materials and Structures. 2018;25(12):1009–1017. https://doi.org/10.1080/15376494.2017.1342882
- Temis Yu.M., Fakeev A.I. Model of the curve of non-isothermal cyclic deformation. Problems of strength and plasticity. 2013;75(1):5–10. (In Russ.)
- Bazhenov V.G., Zhestkov M.N. Numerical Modeling of Large Deformations for Porous Metals and Identificationof Carcass Deformation Diagrams. Mechanics of Composite Materials. 2021;56(6):747–754. https://doi.org/10.1007/ s11029-021-09920-x
- Bazhenov V.G., Zhestkov M.N. Computer Modeling Deformation of Porous Elastoplastic Materials and Identification their Characteristics Using the Principle of Three-dimensional Similarity. Journal of Siberian Federal Universit. Mathematics and Physics. 2021;14(6):746–755. https://doi.org/10.17516/1997-1397-2021-14-6-746-755
- Bazhenov V.G., Kazakov D.A., Nagornykh E.V. Modeling the behavior of elastic-plastic rods under tensiontorsion and constructing their diagrams of deformation to rupture, taking into account the type of stress-strain state. Reports of the Russian Academy of Sciences. Physics, technical sciences. 2021;501(1):23–28. (In Russ.) https://doi.org/10.31857/S268674002106002X
- Bazhenov V.G., Nagornykh E.V., Samsonova D.A. Modeling of elastoplastic buckling of a cylindrical shell withinitial shape imperfections and elastic filler under external pressure. AIP Conference Proceedings: 28th Russian Conference on Mathematical Modelling in Natural Sciences, 02–05 October 2019, Perm, Russia, 2020;2216:040001. https://doi.org/10.1063/5.0003598
- Cheremnykh S., Zubchaninov V., Gultyaev V. Deformation of cylindrical shells of steel 45 under complex loading. E3S Web of Conferences. 22nd International Scientific Conference on Construction the Formation of Living Environment, FORM 2019. 2019;04025. https://doi.org/10.1051/e3sconf/20199704025
- Cheremnykh S.V. Experimental study of elastic-plastic deformation of a cylindrical shell made of 45 steel. Construction mechanics of engineering structures and structures. 2021;17(5):519–527. (In Russ.) https://doi.org/10.22363/1815-5235-2021-17-5-519-527
- Cheremnykh S., Kuzhin M. Solution of the problem of stability of 40x steel shell. Journal of Physics: Conference Series. International Scientific Conference on Modelling and Methods of Structural Analysis, MMSA 2019. 2020;012191. https://doi.org/10.1088/1742-6596/1425/1/012191
- Bondar V.S., Abashev D.R. Constructing a memory surface for separating the processes of monotone and cyclicloads. Problems of strength and plasticity. 2022;84(3):364–375. (In Russ.) https://doi.org/10.32326/1814-9146-2022-84-3-364-375
- Bazhenov V.G., Nagornykh E.V. Numerical analysis of large elastoplastic deformations of bodies and media andidentification of their deformation diagrams under various types of loading. Scientific notes of Kazan University. Series: Physical and Mathematical Sciences. 2022;164(4):316–328. (In Russ.) https://doi.org/10.26907/2541-7746.2022.4.316-328
- Bazhenov V.G., Kazakov D.A., Osetrov S.L. Analysis of the limiting states of cylindrical elastoplastic shellsunder tension and combined loading by internal pressure and tension. Bulletin of the Perm National Research Polytechnic University. Mechanics. 2022;2:39–48. (In Russ.) https://doi.org/10.15593/perm.mech/2022.2.04
- Bazhenov V.G., Kazakov D.A., Kibets A.I. Formulation and numerical solution of the problem of loss of stabilityof elastoplastic shells of rotation with elastic filler under combined axisymmetric torsion loads. Bulletin of the Perm National Research Polytechnic University. Mechanics. 2022;3:95–106. (In Russ.) https://doi.org/10.15593/perm.mech/2022.3.10
- Abrosimov N.A., Elesin A.V., Igumnov L. Computer simulation of the process of loss of stability of compositecylindrical shells under combined quasi-static anddynamic loads. Advanced Structured Materials. 2021;137:125–137. https://doi.org/10.1007/978-3-030-53755-5_9
Дополнительные файлы
