Проектирование тонкостенных деталей одинарной кривизны для использования в облегченных конструкциях

Обложка

Цитировать

Полный текст

Аннотация

Цель исследования - нахождение минимальной (критической) кривизны листового материала, допускающей гибку без разрушения гнутого элемента (образование продольных трещин) и определяемой совокупной «игрой» двух деформационных параметров - утонение, приводящее к ослаблению сечения детали, и деформационное упрочнение материала, характеризуемое интенсивностью деформаций. Проанализирована существующая схема листовой гибки в совокупности с кинематикой деформационного изменения первоначальных радиусов детали ввиду неразрывности сжимающих (радиальная) и растягивающих (тангенциальная) деформаций. При допущении гипотезы плоских сечений в условиях листовой гибки разработана математическая модель, позволяющая оценить деформационные и геометрические (утонение) параметры при формообразовании торовой поверхности различной кривизны. Выявлен уровень радиальных напряжений с учетом деформационного упрочнения и утонения изгибаемого материала, приводящих к исчерпанию его несущей способности (разрушение), где критерием пластичности являются механические свойства конкретного материала, полученные в испытаниях на растяжение (пределы текучести и прочности, относительное удлинение), аппроксимированные степенной зависимостью. Полученные результаты найдут применение при проектировании силовых облегченных конструкций; в моделировании напряженно-деформированного состояния металла при разработке технологических процессов листовой штамповки (гибки) для вычисления величины утонения, оценки уровня радиальных напряжений гибки металла по торцевой кромке давящего пуансона, а также при проектировании гибочной оснастки.

Об авторах

Юрий Анатольевич Морозов

Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)

Автор, ответственный за переписку.
Email: akafest@mail.ru
ORCID iD: 0000-0001-9229-7398
SPIN-код: 3189-5426

кандидат технических наук, доцент кафедры МТ-13 технологии обработки материалов

Москва, Россия

Борис Феликсович Белелюбский

Московский политехнический университет (Московский Политех)

Email: alib@bk.ru
ORCID iD: 0000-0002-1702-707X
SPIN-код: 2007-1003

кандидат технических наук, доцент кафедры металлургии

Москва, Россия

Список литературы

  1. Vlasov S.V., Yelatontsev N.A. Balans napryazheniy i deformatsiy pri kholodnoy gibke listovoy sudostroitel’noy stali. FEFU: School of Engineering Bulletin. 2021;(1):36–48. (In Russ.) http://www.doi.org/10.24866/2227-6858/2021-1-4
  2. Dang X., He K., Zhang F., Du R. A new flexible sheet metal forming method of incremental bending. Procedia Manufacturing. 2018;15:1298–1305. https://doi.org/10.1016/j.promfg.2018.07.355
  3. Morozov Yu.A. Development of the configuration of bent profiles in the design of translucent structures. Informatics and technologies. Information technologies in industry and informatics. Proceedings of the conference. Moscow, April 12–13, 2018. Moscow: RTU MIREA Publ.; 2018;2:733–737. (In Russ.) EDN: YWQWPB
  4. Morozov Yu.A. Investigation of the deformed state of the material in the production of bent profiles. Informatics and technologies. Information technologies in industry and informatics. Proceedings of the conference. Moscow, April 11–12, 2019. Moscow: RTU MIREA Publ.; 2019;2:288–295. (In Russ.) EDN: IFOSTI
  5. Ahn K. Plastic bending of sheet metal with tension/compression asymmetry. International Journal of Solids and Structures. 2020;204–205:65–80. https://doi.org/10.1016/j.ijsolstr.2020.05.022
  6. Barnwal V.K., Lee S.-L., Jisik Choi, Kim J.-H., Barlat F. Fracture assessment in dual phase and transformationinduced plasticity steels during 3-point bending. Theoretical and Applied Fracture Mechanics. 2020;110:102834. https:// doi.org/10.1016/j.tafmec.2020.102834
  7. Zadpoor A.A., Campoli G., Sinke J., Benedictus R. Fracture in bending — The straining limits of monolithic sheets and machined tailor-made blanks. Materials & Design. 2011;32(3):1229–1241. https://doi.org/10.1016/j.matdes.2010.10.005
  8. Yoshida M., Yoshida F., Konishi H., Fukumoto K. Fracture limits of sheet metals under stretch bending. International Journal of Mechanical Sciences. 2005;47(12):1885–1896. https://doi.org/10.1016/j.ijmecsci.2005.07.006.
  9. Romanovskiy V.P. Handbook of Cold Forming. Moscow. Leningrad: Mashinostroyeniye. Publ.; 1979. (In Russ.)
  10. Li F.F., Zhu J., Zhang W., Fang G. Investigation on the inhomogeneous deformation of magnesium alloy during bending using an advanced plasticity model. Journal of Materials Research and Technology. 2023;25:5064–5075. https:// doi.org/10.1016/j.jmrt.2023.06.264
  11. Li S., He J., Gu B., Zeng D., Xia Z.C., Zhao Y., Lin Z. Anisotropic fracture of advanced high strength steel sheets: Experiment and theory. International Journal of Plasticity. 2018;103:95–118. https://doi.org/10.1016/j.ijplas.2018.01.003
  12. Soyarslan C., Malekipour Gharbi M., Tekkaya A.E. A combined experimental-numerical investigation of ductile fracture in bending of a class of ferritic-martensitic steel. International Journal of Solids and Structures. 2012;49(13): 1608–1626. https://doi.org/10.1016/j.ijsolstr.2012.03.009
  13. Stoughton T.B., Yoon J.W. A new approach for failure criterion for sheet metals. International Journal of Plasticity. 2011;27(3):440–459. https://doi.org/10.1016/j.ijplas.2010.07.004
  14. Levy B.S., Van Tyne C.J. Predicting breakage on a die radius with a straight bend axis during sheet forming. Journal of Materials Processing Technology. 2009;209(4):2038–2046. https://doi.org/10.1016/j.jmatprotec.2008.04.053
  15. Bate K., Vilson E. Numerical methods in finite element analysis. Prentice-Hall Publ.; 1976. Available from: https://sciarium.com/file/268214/ (accessed: 02.03.2024).
  16. Zenkevich O.K. The finite element method in engineering. Moscow: Mir Publ.; 1975. (In Russ.) Available from: https://djvu.online/file/DtUw9BqXrtZCc (accessed: 02.03.2024).
  17. Lukashkin N.D., Kokhan L.S., Punin V.I., Morozov Yu.A. Bending of profiles on presses and mills. Moscow: MGVMI Publ.; 2005. (In Russ.)
  18. Kokhan L.S., Roberov I.G., Morozov Yu.A. Investigation into kinematic parameters during bending the sheet materials. Tekhnologiya metallov. 2008;(10):11–13. (In Russ.) EDN: IVMCXK
  19. Morozov Yu.А. The study of marginal deformations of the leaf extracts with regard to plastic thinning and destruction of the material. Structural Mechanics of Engineering Constructions and Buildings. 2019;15(5):353–359. (In Russ.) https://doi.org/10.22363/1815-5235-2019-15-5-353-359
  20. Arzamasov B.N., Solovyova T.V., Gerasimov S.A. Handbook of Structural Materials. Moscow: MSTU named after N.E. Bauman Publ.; 2005. (In Russ.)
  21. Tret’yakov A.V., Zyuzin V.I. Mechanical properties of metals and alloys during pressure treatment. Directory. Moscow: Metallurgiya Publ.; 1973. (In Russ.)
  22. Isachenkov E.I. Contact friction and lubrication in metal forming. Moscow: Mashinostroyeniye Publ.; 1978. (In Russ.)

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».