Methodology for determining progressing ultimate states based on the displacement method

Capa

Citar

Texto integral

Resumo

Solving of calculation problems for building structures is currently based on the principle of minimum total energy of structures deformation. However, it is not possible to determine the remaining bearing capacity of the structure using this principle. In the study it is proposed to use the criterion of critical levels of deformation energy to solve this problem. As a result, the ultimate state conditions of a design are formulated on the basis of extreme values of generalized parameters of designing over the whole area of their admissible values, including the boundary. The task is solved as a problem of eigenvalues for the stiffness matrix of the system. The extreme values of design parameters that correspond to critical energy levels are found, which are used to find the maximum possible value of the energy of deformation for the considered structure. The residual bearing capacity is calculated by the value of residual potential energy, which, in turn, is equal to the difference between the maximum possible value of the deformation energy of the structure and the work of external forces. A gradual methodology for investigating the progressive ultimate limit state is proposed, which is based on the sequential exclusion of those elements where the onset of the ultimate limit state is expected firstly. An example of the practical use of the proposed methods is given on the example of calculating a simple but visual design - a statically indeterminate truss.

Sobre autores

Leonid Stupishin

National Research Moscow State University of Civil Engineering

Email: lusgsh@ya.ru
ORCID ID: 0000-0002-1794-867X

Doctor of Technical Sciences, Professor, Department of Structural and Theoretical Mechanics, Institute of Industrial and Civil Engineering

Moscow, Russian Federation

Konstantin Nikitin

National Research Moscow State University of Civil Engineering

Autor responsável pela correspondência
Email: niksbox@yandex.ru
ORCID ID: 0000-0002-8003-4299

PhD, Associate Professor, of the Department of Structural and Theoretical Mechanics, Institute of Industrial and Civil Engineering

Moscow, Russian Federation

Maria Moshkevich

Southwest State University

Email: mmoshkevich@mail.ru
ORCID ID: 0000-0001-8749-2252

PhD in Economics, Associate Professor, Department of Industrial and Civil Engineering, Faculty of Construction and Architecture

Kursk, Russian Federation

Bibliografia

  1. Wang X., Xu Q., Atluri S.N. Combination of the variational iteration method and numerical algorithms for nonlinear problems. Applied Mathematical Modelling. 2019;79:243-259. https://doi.org/10.1016/j.apm.2019.10.034
  2. Renaud A., Heuzéb T., Stainier L. The discontinuous Galerkin material point method for variational hyperelastic - plastic solids. Computer Methods in Applied Mechanics and Engineering. 2020;365:112987. https://doi.org/10.1016/j.cma.2020.112987
  3. Xiang C., Li C., Zhou Y., Dang C. An efficient damage identification method for simply supported beams based on strain energy information entropy. Advances in Materials Science and Engineering. 2020;2020:1-11. https://doi.org/10.1155/2020/9283949
  4. Coombs W.M., Augarde C.E., Brennan A.G., Brown M.J., Charlton T.J., Knappett J.A., Motlagh Y.G., Wang L. On Lagrangian mechanics and the implicit material point method for large deformation elasto-plasticity. Computer Methods in Applied Mechanics and Engineering. 2020;358:112622. https://doi.org/10.1016/j.cma.2019.112622
  5. Portillo D., Oesterle B., Thierer R., Bischoff M., Romero I. Structural models based on 3D constitutive laws: variational structure and numerical solution. Computer Methods in Applied Mechanics and Engineering. 2020;362:112872. https://doi.org/10.1016/j.cma.2020.112872
  6. Lin Y., Zhang X., Xu W., Zhou M. Importance Assessment of structural members based on elastic-plastic strain energy. Advances in Materials Science and Engineering. 2019;2019:1-17. https://doi.org/10.1155/2019/8019675
  7. Tamrazyan A.G., Alekseytsev A.V. Optimal structures design: accounting of costs and relative accidents risk. Proceedings of Moscow State University of Civil Engineering. 2019;14(7):819-830. (In Russ.) https://doi.org/10.22227/1997-0935.2019.7.819-830
  8. Lalin V.V., Lalina I.I., Golovchenko Yu.Yu., Shakirova R.M., Lebedeva A.A. Method for minimizing stress resultant in rod systems using nodal loads. The Eurasian Scientific Journal. 2022;14(2):35SAVN222. (In Russ.) Available from: https://esj.today/PDF/35SAVN222.pdf (accessed: 22.02.2023).
  9. Repetckii O.V., Nguyen V.V. Research of influence mistuning parameter on the durability bladed disks turbomachines based on sensitivity analysis. Bulletin NGIEI. 2020;(10):5-16. (In Russ.) https://doi.org/10.24411/2227-9407-2020-10090
  10. Alekseytsev A.V., Al Ali M. Optimization of bearing structures subject to mechanical safety: an evolutionary approach and software. International Journal for Computational Civil and Structural Engineering. 2022;18(2):131-142.
  11. Perelmuter А.V., Slivker V.I. Calculation models of structures and the possibility of their analysis. Мoscow: DMK Press; 2007. (In Russ.)
  12. Golik V.I., Dmitrak Yu.V., Gabaraev O.Z., Razorenov Yu.I. Use of residual rock strength in bearing structures in underground ore mining. RUDN Journal of Engineering Research. 2019;20(2):193-203. (In Russ.) http://doi.org/10.22363/ 2312-8143-2019-20-2-193-203
  13. Minasyan А.А. Criteria for the strength of corrosively damaged concrete in a flat stressed state and the residual life of the bearing capacity of the floor slabs. Modern Construction and Architecture. 2022;(5):11-16. (In Russ.)
  14. Lugantsev L.D., Tischenko S.L. Computer monitoring of the residual life of structural elements under corrosion. Mathematical Methods in Engineering and Technology. 2020;3:52-55. (In Russ.)
  15. Shmelev G.D., Ishkov A.N., Drapalyuk D.A. A method for predicting remaining service life according to the probable decrease in the bearing capacity of the operated building structures. Housing and Utilities Infrastructure. 2022;(2):9-18. (In Russ.) https://doi.org/10.36622/VSTU.2022.21.2.001
  16. Shmelev G.D., Ishkov A.N., Shmelev A.G. Calculation of the residual life of reinforced concrete structures in the reactor shaft of the NPP power unit. Housing and Utilities Infrastructure. 2022;(4):9-20. (In Russ.) https://doi.org/10.36622/VSTU.2022.23.4.001
  17. Shalyi Е.Е., Leonovich S.N., Kim L.V., Zverev А.А., Shalaya T.E. Repair and forecasting of durability of repaired reinforced concrete hydraulic structures. Object-Spatial Design of Unique Buildings and Structures: Collection of Materials of the I Scientific and Practical Forum SMARTBUILD. Ivanovo: IvSPU Publ.; 2018. p. 97-102. (In Russ.)
  18. Smolyago G.A., Frolov N.V. Modern approaches to calculating the residual life of bent reinforced concrete elements with corrosion damage. Journal of Construction and Architecture. 2019;21(6):88-100. (In Russ.) https://doi.org/10.31675/1607-1859-2019-21-6-88-100
  19. Utkin V.С., Soloviev С.А. Determination of residual load-bearing capacity and reliability of load-bearing elements of reinforced concrete structures at the operational stage. Vologda: Vologda State University; 2019. (In Russ.)
  20. Mandritsa D.P. Identification of reserves of operational suitability of materials and structures under special loads. Proceedings of Tula State University. Technical Sciences. 2020;(12):355-361. (In Russ.)
  21. Lyudmirsky Y.G., Assaulenko S.S., Kramskoi A.V. Methods and equipment for experimental evaluation of the performance of shell and hull structures. Advanced Engineering Research. 2022;22(3):252-260.
  22. Stupishin L.Yu. Critical levels of internal potential energy of deformation of solid deformable bodies. Kursk: Universitetskaya Kniga Publ.; 2022. (In Russ.) https://doi.org/10.47581/2022/Stupushin.01
  23. Stupishin L.Yu. Structural limit state and critical energy levels. Industrial and Civil Engineering. 2018;10:102-106. (In Russ.)
  24. Stupishin L.Yu., Mondrus V.L. Critical energy properties study for unsymmetrical deformable structures. Buildings. 2022;12:779. https://doi.org/10.3390/ buildings12060779
  25. Stupishin L.Yu., Moshkevich M.L. Limit states design theory based on critical energy levels criterion in force method form. Magazine of Civil Engineering. 2022;(3):11. https://doi.org/10.34910/MCE.111.1
  26. Stupishin L.Yu., Nikitin K.E. Computer system for the analysis of structures based on the critical energy levels method. BIM Modeling for Construction and Architecture: Proceedings of the IV International Scientific and Practical Conference. St. Petersburg: SPbGASU Publ.; 2021. p. 223-230. (In Russ.) https://doi.org/10.23968/BIMAC.2021.000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».