Experimental determination of the limiting flexibility of eucalyptus wood for axially compressed elements
- Autores: Cajamarca-Zuniga D.1,2, Carrasco C.1, Molina B.1
-
Afiliações:
- Catholic University of Cuenca
- Peoples’ Friendship University of Russia (RUDN University)
- Edição: Volume 16, Nº 3 (2020)
- Páginas: 226-232
- Seção: Experimental researches
- URL: https://journals.rcsi.science/1815-5235/article/view/325618
- DOI: https://doi.org/10.22363/1815-5235-2020-16-3-226-232
- ID: 325618
Citar
Texto integral
Resumo
Relevance. Wood is one of the most widely used building materials throughout history, and because of its physical-mechanical properties it mainly has been used in flexed and compressed elements. Eucalyptus was introduced to Latin America in the mid-19th century and nowadays is one of the most used woods for construction in the Andean region of Ecuador. To designing slender structural elements under axial loading engineers usually use the Euler formula, but it is applicable only if the compression stress does not exceed the proportional limit. One way to determine if the compression stress will be below the proportional limit is by comparing of the slenderness of the element with the limiting flexibility of its material which allows knowing if the buckling will occur in the elastic zone where Euler formula applies. The aim of the work - determine the magnitude of the limiting flexibility of eucalyptus, since this wood has been the subject of some investigations, however, no information about the limiting flexibility magnitude for the calculation of axially compressed elements. Methods. The laboratory tests to determine the magnitudes of the modulus of elasticity, proportional limit, admissible compression stress and limiting flexibility was carried out. Results. This experimental investigation shows that the magnitude of the limiting flexibility or so-called critical slenderness ratio for eucalyptus globulus is 59.
Sobre autores
David Cajamarca-Zuniga
Catholic University of Cuenca; Peoples’ Friendship University of Russia (RUDN University)
Autor responsável pela correspondência
Email: cajamarca.zuniga@gmail.com
Master of Science, PhD postgraduate student, Department of Civil Engineering, Engineering Academy of RUDN University; Docent of the Department of Civil Engineering at CUC
Av. De las Americas & Humboldt, Cuenca, 010101, Republic of Ecuador; 6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationCristhian Carrasco
Catholic University of Cuenca
Email: cajamarca.zuniga@gmail.com
Civil Engineer graduate, Department of Civil Engineering
Av. De las Americas & Humboldt, Cuenca, 010101, Republic of EcuadorBelen Molina
Catholic University of Cuenca
Email: cajamarca.zuniga@gmail.com
Civil Engineer graduate, Department of Civil Engineering
Av. De las Americas & Humboldt, Cuenca, 010101, Republic of EcuadorBibliografia
- Warren E., Smith R.G.B., Apiolaza L.A., Walker J.C.F. Effect of stocking on juvenile wood stiffness for three Eucalyptus species. New For. 2009;37(3):241-250. DOI: 10.1007/ s11056-008-9120-9.
- Food and Agriculture Organization of the United Nations (FAO). El eucalipto en la repoblación forestal. Rome, Italy; 1981. (In Spanish.)
- Acosta Solis M. El eucalipto en el Ecuador. Instituto Ecuatoriano de Ciencias Forestales, Quito, Ecuadtor; 1949. (In Spanish.)
- Aguirre Z., Loja A., Solano C., Aguirre N. Especies forestales mas aprovechadas en la region sur del Ecuador. Loja, Ecuador: Universidad Nacional de Loja; 2015 (In Spanish.)
- Pagel C.L., Lenner R., Wessels C.B. Investigation into material resistance factors and properties of young, engineered Eucalyptus grandis timber. Constr. Build. Mater. 2020;230:117059. doi: 10.1016/j.conbuildmat.2019.117059.
- Vinueza M. Ficha Técnica No. 15 Eucalyptus Globulus Labill. Ecuador Forestal. Quito, 2013 (In Spanish.)
- Acosta S., Zakowicz M. et al. Propiedades físico mecánicas de la madera de Eucalyptus grandis de las procedencias genéticas : Kendall (Australia), huerto semillero de Sudáfrica y semilla local Concordia, plantadas comercialmente en Argentina. Argentina; 2004 (In Spanish.)
- Crafford P.L., Wessels C.B. The potential of young, green finger-jointed Eucalyptus grandis lumber for roof truss manufacturing. South. For. 2016;78(1):61-71. DOI: 10.2989/ 20702620.2015.1108618.
- Piter J.C., Zerbino R.L., Blaß H.J. Visual strength grading of Argentinean Eucalyptus grandis : Strength, stiffness and density profiles and corresponding limits for the main grading parameters. Holz als Roh - und Werkst. 2004; 62(1):1-8. doi: 10.1007/s00107-003-0433-2.
- Gonc̈alves F.G. et al. Parâmetros dendrométricos e correlações com propriedades tecnológicas em um híbrido clonal de Eucalyptus urophylla x Eucalyptus grandisl. Rev. Arvore. 2010;34(5):947-959. doi: 10.1590/s0100-67622010000500020.
- Da Cruz C.R., Lima J.T., De Muniz G.I.B. Varia- ções dentro das árvores e entre clones das propriedades físicas e mecânicas da madeira de híbridos de Eucalyptus. Sci. For. Sci. 2003;64: 33-47.
- Johnston B.G., Hon M. Column buckling theory: Historic highlights. J. Struct. Eng. (United States). 1983;10(9):2086-2096. doi: 10.1061/(ASCE)0733-9445(1984)110:8(1930).
- The Pan American Standards Commission. COPANT-461. Timber. Method for determining apparent specific weight. 1972.
- The Pan American Standards Commission. COPANT-464. Timber. Method of determining the compression parallet to grain. 1972.
- The Pan American Standards Commission. COPANT-555. Timber. Static bendig test method. 1973.
- American Society for Testing and Materials. ASTM D143-94. Standard Test Methods for Small Clear Specimens of Timber. Pennsylvania; 2000.
- International Organization for Standardization. ISO 13061-17:2017. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 17: Determination of ultimate stress in compression parallel to grain. Geneva; 2017.
- Vinueza M. Ficha Técnica No. 10. Eucalipto. Ecuador Forestal. Quito; 2012. (In Spanish.)
- Cueto G. et al. Influencia del raleo sobre el módulo de elasticidad y ruptura en Eucalyptus grandis. Agrociencia Uruguay. 2013;17(1):91-97. doi: 10.2477/vol17iss1pp91-97. (In Spanish.)
- Kimmich D. Propiedades físicas, mecánicas, usos y aplicaciones de la madera de Ecualyptus grandis. Available from: https://www.monografias.com/trabajos66/usos-eucaliptus-grandis/usos-eucaliptus-grandis.shtml (Accessed 18th April 2020). (In Spanish.)
- Nocetti M., Pröller M. et al. Investigating the potential of strength grading green Eucalyptus grandis lumber using multi-sensor technology. BioResources. 2017;12(4): 9273-9286. doi: 10.15376/biores.12.4.9273-9286.
- Huang D., Bian Y., Huang D., Zhou A., Sheng B. An ultimate-state-based-model for inelastic analysis of intermediate slenderness PSB columns under eccentrically compressive load. Constr. Build. Mater. 2015;94:306-314. doi: 10.1016/j.conbuildmat.2015.06.059.
- MechaniCalc. Column Buckling. Available from: https://mechanicalc.com/reference/column-buckling (Accessed 14th March 2020).
- Dornfeld W. Columns. Machine Design Lecture Notes (p. 8). Fairfield University; 2019.
- Mohamed H., Aziz H. An Appraisal of Euler and Johnson Buckling theories under dynamic compression buckling loading. Iraqi J. Mech. Mater. 2007;9(2):173-181.
- Wang X., Zhou A., Zhao L., Chui Y.H. Mechanical properties of wood columns with rectangular hollow cross section. Constr. Build. Mater. 2019;214:133-142. doi: 10.1016/j.conbuildmat.2019.04.119.
- Li X., Ashraf M. et al. Experimental and numerical study on bending properties of heterogeneous lamella layups in cross laminated timber using Australian Radiata Pine. Constr. Build. Mater. 2020;247:118525. DOI: 10.1016/ j.conbuildmat.2020.118525.
- Burdzik W. Grade verification of sa pine - bending, modulus of rupture, modulus of elasticity, tension and compression. South. African For. J. 2004;202(1):21-27. doi: 10.1080/20702620.2004.10431786.
- Roth B.E., Li X., Huber D.A., Peter G.F. Effects of management intensity, genetics and planting density on wood stiffness in a plantation of juvenile loblolly pine in the southeastern USA. For. Ecol. Manage. 2007;246(2-3): 155-162. doi: 10.1016/j.foreco.2007.03.028.
- Wessels C.B., Dowse G.P., Smit H.C. The flexural properties of young Pinus elliottii × Pinus caribaea var. hondurensis timber from the Southern Cape and their prediction from acoustic measurements. South. For. 2011; 73(3-4): 137-147. doi: 10.2989/20702620.2011.640427.
- Sharma B., Gatóo A., Bock M., Ramage M. Engineered bamboo for structural applications. Constr. Build. Mater. 2015;81:66-73. doi: 10.1016/j.conbuildmat.2015.01.077.
- Sun X., He M., Li Z. Novel engineered wood and bamboo composites for structural applications: State-of-art of manufacturing technology and mechanical performance evaluation. Constr. Build. Mater. 2020;249(1239):118751. doi: 10.1016/j.conbuildmat.2020.118751.
Arquivos suplementares
