Метод полной дискретизации в совместном расчете во времени системы «конструкция - фундамент - грунт»

Обложка

Цитировать

Полный текст

Аннотация

Цели исследования. Перспективный переход СНГ на европейские стандарты проектирования в строительной отрасли требует разработки новых и модификации известных инженерных методов расчета и проектирования строительства. Создание и развитие таких методов должно основываться на фундаментальных исследованиях, которые могут стать основой для разработки принципиально новых, инновационных технологий. Методы. В статье рассматриваются основы метода полной дискретизации и его практическое применение. Этот метод является специальной модификацией метода конечных элементов для решения задач ползучести. Практическое применение метода иллюстрируется моделированием и прикладными задачами. Результаты. В работе представлен совместный расчет системы «конструкция - фундамент - грунт» на примере резервуара модульной станции биологической очистки сточных вод, проектируемой для полей фильтрации в поселке Тасбогет Акмолинской области Республики Казахстан. Во всей расчетной области получена полная картина эволюции векторов перемещений, деформаций и напряжений во времени с учетом технологии возведения, проведено сравнение результатов расчета с учетом и без учета технологии возведения конструкций.

Об авторах

Татьяна Николаевна Тер-Эммануильян

Российский университет транспорта

Автор, ответственный за переписку.
Email: tanya_ter@mail.ru

доктор технических наук, доцент, профессор, кафедра «Теоретическая механика»

Российская Федерация, 127994, Москва, ул. Образцова, д. 9, стр. 9

Игорь Олегович Полумордвинов

Казахстанско-Британский технический университет

Email: tanya_ter@mail.ru

доктор технических наук, доцент, ассистентпрофессор, факультет «Энергетика и нефтегазовая индустрия.

Республика Казахстан, A05H1T2, Алма-Ата, ул. Толе-би, 59

Список литературы

  1. Chiorino M.A. (2014). Analysis of structural effects of time-dependent behavior of concrete: an internationally harmonized format. Concrete and Reinforced concrete - Glance at Future. III All Russian (International) Conference on Concrete and Reinforced Concrete, Moscow, 2014. Plenary papers (vol. 7, pp. 338-350).
  2. Fib Model Code for Concrete Structures 2010. (2013). Ernst & Sohn, 402.
  3. GOSSTROJ USSR; NIIZB. (1976). Polzuchest' i usadka betona i zhelezobetonnyh konstrukcij. Sostoyanie problemy i perspektivy razvitiya [Creep and shrinkage of concrete and reinforced concrete strictures. State of the problem and development prospects]. Moscow: Strojizdat Publ., 351. (In Russ.)
  4. Beglov A.D., Sanjarovsky R.S., Bondarenko V.M. (2005) Polzuchest' betona i modeli Evrostandartov [Creep of concrete and models of European standard]. Beton i zhelezobeton [Concrete and reinforced concrete], (2), 29-30.
  5. Bazant Z.P., Cedolin L. (2010). Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. World Scientific, 1009.
  6. Mahnken R.A. (1995). Newton-multigrid algorithm for elastoplastic-viscoplastic problems. Comput. Mech., 15, 408-425.
  7. McTavich D.J., Hughes P.C. (1992). Finite element modeling of linear visco-elastic structures; the GHM method. AHS Struct. Dyn. and Mater. Conf. Dallas, TX, 1753-1763.
  8. Mackerle J. (1998). Finite elements and boundary elements applied in plane change solidification and melting problems. A bibliography (1996-1998). Finite Elem. Anal. and Des., 32(3), 203-211.
  9. Zienkiewich O.C. (1975). Visco-Plasticity, Plasticity, Creep and Visco-Plastic Flow (Problems of Small, Large and Continuing Deformation). Lect. Notes Math., 461, 297-328.
  10. Ter-Emmanuilyan N.Ya. (1975). Metod prostranstvenno-vremennoi discretizazhii dlya resheniya linejnih zadach teorii polzuchesti: sbornik statei po voprosam matematiki i mekhaniki [Method of spatially time discretization for the decision of linear problems of the theory of creep: collected papers on questions of mathematics and the mechanics], 7, 16-22. (In Russ.)
  11. Ter-Emmanuilyan N.Ya., Ter-Emmanuilyan T.N. (2006). Metod polnoj discretizazhii dlya resheniya zadach uprugopolzuchesti [Method of full discretization for the decision problems of an elastic creep]. Almaty, 416 (In Russ.)
  12. Aitalyev Sh., Ter-Emmanuilyan N., Ter-Emmanuilyan T., Shmanov T. (2007). Joint calculation of a foundation and soil of the largescale structure in view of creep (pp. 159-168). Taylor & Francis Group, London.
  13. Aitalyev Sh., Ter-Emmanuilyan T. (2003). Method of full discretization in joint calculations of buildings and the bases in view of creep, spatial and time heterogeneity. Questions of applied physics and mathematics, 241-246.
  14. Arutyunyan N.H. (1952). Necotorye voprosy teorii polzuchesti. Moscow, Leningrad: Gostehteorizdat Publ., 323. (In Russ.)
  15. Ilyichev V. (2004). Experience of underground construction in Moscow. Works of the international geotechnical conference, Almaty, 41-42.
  16. Alexandrovskiy S.V. (1973). Raschet betonnyh i zhelezobetonnyh konstrukcij na izmenenie temperatury i vlazhnosti s uchetom polzuchesti [Calculation of concrete and reinforced concrete structures for changes in temperature and humidity, taking into account the creep]. Moscow: Strojizdat Publ., 432. (In Russ.)
  17. Erzhanov Zh.S., Karimbayev T.D. (1975). Metod konechnyh elementiv v zadachah mehaniki gornyh porod [The finite element method in the problems of rock mechanics]. Almaty: Nauka Publ., 238. (In Russ.)
  18. Ulitsky V.M., Shashkin A.G., Shashkin K.G., Lisyuk M. B. (2003). Soil-structure interaction: methodology of analysis and application in design. Saint Petersburg, Moscow, 40.
  19. Sanjarovsky R., Manchenko M. (2016). Errors in the theory of creep of reinforced concrete and modern norms. Structural Mechanics of Engineering Constructions and Buildings, (3), 25-32.
  20. Sanjarovskiy R., Ter-Emmanuilyan T., Manchenko M. (2015). Creep of Concrete and Its Instant Nonlinear Deformation in the Calculation of Structures. CONCREEP 10, 238-247.
  21. Sanzharovskij R.S., Manchenko M.M. (2017). Errors of international standards on reinforced concrete and rules of the Eurocode. Structural Mechanics of Engineering Constructions and Buildings, (6), 25-36.
  22. Sanzharovsky R.S., Ter-Emmanuilyan T.N., Manchenko M.M. (2018). Superposition principle as the fundamental error of the creep theory and standards of the reinforced concrete. Structural Mechanics of Engineering Constructions and Buildings, 14(2), 92-104. http://dx.doi.org/ 10.22363/1815-5235-2018-14-2-92-104
  23. Sanzharovsky R.S., Ter-Emmanuilyan T.N., Manchenko M.M. (2019). Three types of errors in the international norms for the design of concrete and reinforced concrete. Taylor & Francis Group, London.
  24. Ovchinnikov I.G., Pshenichnikov M.S. (1999). Polzuchesty betona i zhelezobetona: eksperimentalynye dannye, vliyanie ekspluatazionnyh phaktorov [Creep of concrete and reinforced concrete: experimental data, the influence of operational factors]. Saratov, 40. (In Russ.)

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).